
CSV Utils
Author: Norman Carver c©2022

Contents

1 Introduction 2

2 Utilities List 3

3 Usage Examples 5

4 The Utilities 8

4.1 csv-cat . 8

4.2 csv-clean . 10

4.3 csv-counts-fields . 15

4.4 csv-counts-records . 17

4.5 csv-cut . 19

4.6 csv-edit . 21

4.7 csv-format . 23

4.8 csv-get-field . 26

4.9 csv-get-record . 28

4.10 csv-grep . 30

4.11 csv-grep-cond . 32

4.12 csv-grep-cond-records . 34

4.13 csv-join . 36

4.14 csv-names2nums . 39

4.15 csv-paste . 40

4.16 csv-print . 43

4.17 csv-process-field . 47

4.18 csv-process-records . 52

4.19 csv-records . 55

4.20 csv-reformat-date-time . 58

4.21 csv-remove-duplicate-keys . 61

4.22 csv-replace-field . 63

4.23 csv-sort . 65

1

4.24 csv-sort-mult . 69

4.25 csv-validate . 73

4.26 csv-to-dsv . 75

4.27 dsv-to-csv . 77

5 CSV File Syntax 79

6 General Behavior Notes 82

6.1 Header Records . 82

6.2 File Arguments and Standard Input . 82

6.3 Empty “CSV” Files . 82

6.4 Blank (Empty) Records . 83

7 Integrating CSV Utils with Standard Linux Utilities 84

8 AWK Code Basics 85

8.1 AWK Expressions vs Programs . 85

8.2 Assignments to $0 . 86

8.3 Formatting Real Numbers . 86

8.4 Alternative Cases in AWK Code . 86

8.5 AWK getline . 87

9 Date-Time Format Strings 89

10 Build-Time Parameters 91

10.1 CSV File Size Limits . 91

10.2 Embedded Characters Replacements . 91

10.3 Utility Program Paths . 92

11 Performance 93

2

1 Introduction

CSV Utils is a set of command-line utilities for manipulating Comma Separated Values
(CSV) files. They are written in C and emphasize execution speed.

CSV files consist of a sequence of records, each record consisting of a sequence of fields.
Records are separated by record separator/terminator character(s), fields are separated by
single commas (,’s). The main standard for CSV files is RFC 4180, though it is possible to
find “CSV files” that do not strictly adhere to RFC 4180.

The CSV Utils component programs are able to handle CSV files compatible with RFC
4180, but are often more flexible. For example, RFC 4180 specifies that all records are to
have identical numbers of fields. However, it can sometimes be useful to produce “CSV
files”having varying numbers of fields in records (avoiding the need to add empty padding
fields). Because of this, most CSV Utils programs do not require that argument files have
uniform field counts. If important, csv-validate can check for records with non-uniform field
counts and csv-clean can both check for and repair such records.

In addition to the field structure of records, most CSV files are structured with the first record
being a header record that names the fields. However, not every CSV file is guaranteed to
have such a header (the first record may be a standard data record). Default operation
of the CSV Utils programs will assume there is a header record that contains field names.
However, a number of the CSV Utils programs have options that modify how first records
in CSV files are treated, to be able to handle CSV files without header records.

When utilities require that field arguments be specified, all utilities accept 1-based field
indices by default. A number of the utilities will also accept field names (as found in a
header record) with the -Q option. Our experience after a great deal work processing CSV
files has been that field names can be problematic. Not only are field names likely to be
much longer than indices, one must get the exact spelling, capitalization, and separators
correct—often very annoying! It is easy to use “csv-print 1 file.csv” to get a quick
mapping of header field names to indices, and not hard to remember that you want to
operate on, e.g, field 5. By contrast, with field names we might have to remember whether
the field name is: “Last Name”, “Last_Name”, “last name”, “Name Last”, etc, etc. And
then there are the header typos (“Last_Nam”) and inconsistencies (e.g., “Last Name” but
“First_Name”). Nonetheless, there are occasions when it is easier to specify a field name,
instead of determining the index of the field in a CSV file with very many fields.

The utilities do not ever modify their argument CSV files. Instead, the results of operations
are written to standard output. This means output must be redirected to be saved in a file
(or directed through a pipeline). All error messages and informational messages are written
to standard error.

The CSV Utils programs have generally been kept focused on a single operation, to be fast
and easy to understand. Some desired operations on CSV files may thus require use of
multiple programs. It is easy to combine multiple CSV Utils programs via shell pipelines,
since all the programs can be used as Linux/UNIX “filters” (they read from standard input
without file arguments and write to standard output). On modern multicore computers,
pipeline stages run in parallel. This means that multiple pipelined programs will very likely
run faster than a single, more complex utility program would.

3

2 Utilities List

The main set of CSV Utils programs includes:

• csv-cat: “cat” (print out and concatenate) one or more CSV files

• csv-clean: “clean” a CSV file (unquoting fields, removing embedded CR’s and LF’s,
and/or fixing field counts in records)

• csv-counts-fields: print out field counts for the records

• csv-counts-records: print records counts for one or more CSV files

• csv-cut: “cut” (print out) specific fields from the records, to reduce dimensionality

• csv-edit: replace the value of one field in one record

• csv-format: produce readable, columnized text version of a CSV file

• csv-grep: “grep” a field, to select records with field matching a pattern

• csv-grep-cond: “grep” a field, to select records with field meeting a condition

• csv-grep-cond-records: “grep” a record, to select records with multiple fields meet-
ing a joint condition

• csv-join: append records from a second CSV file onto the records from another CSV
file, based on having matching values in fields of the records

• csv-paste: append records from a second CSV file onto the records from another CSV
file, based on record order

• csv-print: print out the fields of one (or more) records, on separate lines for readability

• csv-process-field: process/modify a field of the records, using AWK code

• csv-process-records: process/modify entire records, using AWK code

• csv-records: print out a range of records

• csv-reformat-date-time: reformat date-time values in a field of the records

• csv-remove-duplicate-keys: remove records with duplicate key values

• csv-replace-field: apply search-replace patterns to a field of the records

• csv-sort: sort records based on the values in a single field

• csv-sort-mult: sort records based on the values in multiple fields

• csv-validate: validate a CSV file’s syntax and get stats on various properties

4

Two programs are intended for use in shell scripts:

• csv-get-field: print out a single field the from next record

• csv-get-record: print out the next record

One program converts a list of field names into a list of field numbers, so allows field names
to be used when invoking the utilities:

• csv-names2nums: convert list of field names to field numbers

Two programs are for use in converting between CSV format and alternative DSV formats:

• csv-to-dsv: convert CSV file to DSV file with alternative delimiter char

• dsv-to-csv: convert DSV file with alternative delimiter char to CSV file

5

3 Usage Examples

This section provides a set of examples of common/useful usage patterns. See the sections
for the relevant CSV Utils programs for further information and examples.

Remember that the utilities do not ever modify their argument CSV files. Instead, the
results of operations are written to standard output. This means output must be redirected
to be saved in a file.

• Get the usage message (use --help with any utility):
csv-cat --help

• Merge a set of monthly CSV files (months denoted 01, 02, ..., 12):
csv-cat data-??.csv > data-all.csv

• Remove unnecessary quoting from a CSV file:
csv-clean -c filewquotes.csv > filewoquotes.csv

• Identify records with incorrect numbers of fields (i.e., not same as header):
csv-counts-fields -m file.csv

• Show field count (only) of header:
csv-counts-fields -cn1 file.csv

• Determine number of records (including header) in all local CSV files:
csv-counts-records *.csv

• Reduce dimensionality of CSV file by removing unwanted fields:
csv-cut 1-3,6,12-14 file.csv > file-reduced.csv

• Move “key” field from field 5 to field 1:
csv-cut 5,1-4,6- file.csv > file-reordered.csv

• Get a field’s set of unique values (without header field name being included):
csv-cut -o 3 file.csv | sort -u

• Remove records where a particular field is empty:
(will also remove any “blank” records)
csv-grep -Fvx 3 ’’ file.csv > file-woempties.csv

• Remove records where two fields are empty:
csv-grep -Fvx 3 ’’ file.csv | csv-grep -Fvx 9 ’’ > file-woempties.csv

• Remove records where a particular field is empty or whitespace:
csv-grep -vx 3 ’[[:space:]]*’ file.csv > file-woempties.csv

• Get records (w/header) where field 2 has a value between 100 and 200:
(csv-grep-cond uses AWK code for conditions.)
csv-grep-cond 2 ’($0>=100)&&($0<=200)’ file.csv

6

• Get records where fields 5 and 10 have the same value:
(csv-grep-cond-records uses AWK code for conditions.)
csv-grep-cond-records ’$5==$10’ file.csv

• Join person records from two files using same keys:
csv-join 1 people1.csv 1 people2.csv > combined.csv

• Join records from two identically sorted files:
csv-paste 1 people1.csv 1 people2.csv > combined.csv

• Add a single field key that combines multiple fields:
(Combining last and first name fields as: Last_Name:First_Name.)
(Uses Bash process substitution to run csv-cut to get fields “on the fly.”)
f=file.csv; csv-paste <(csv-cut -s: 2,3 "$f") "$f"

• As above, but then remove fields that were combined:
f=file.csv; csv-paste <(csv-cut -s: 2,3 "$f") "$f" | csv-cut 1,2,5-

• View CSV file header, in easy to read format:
csv-print 1 file.csv

• View particular record along with field names, in easy to read format:
csv-print -h 25 file.csv

• Replace a field’s real number values with (rounded) integer values:
(csv-process-field uses AWK code for computation.)
csv-process-field -e ’{$0=""int($0+0.5)}’ 3 file-wreals.csv > file-wints.csv

• Change value of field 2 based on value of field 1:
(csv-process-records uses AWK code for computation.)
csv-process-records -e ’$1=="Jones"&&$2=="Anne"{$2="Annie"}’ file.csv > file-new.csv

• Create a CSV file with the first 100 records (plus header) of another:
csv-records -hn100 2 file.csv > file100.csv

• Get field 5’s value from record #200 of a CSV file:
csv-records -n1 200 | csv-cut 5

• Reformat date+time field 4 to ISO format:
csv-reformat-date-time 4 ’%D %T’ ’%F %T’ dates.csv > dates-iso.csv

• Remove patient records where updated records have been added:
(Patient IDs are field 1, file has been (stable) sorted on ID.)
csv-remove-duplicate-keys 1 file-wdups.csv > file-wodups.csv

• Add double quotes around a field’s values when unquoted:
(if CSV file is valid, unquoted fields will not contain embedded special characters)
csv-replace-field -x 3 ’[^"]*’ ’"&"’ file.csv > file-wquotes.csv

• Cut a field’s values to the first “subfield,” where separator is dot:
(E.g., cut codes like Q35.9 to “main” code Q35)
csv-replace-field 3 -mx ’([^.]+)(\..+)?’ ’&1’ file.csv > file-mod.csv

7

• Sort a file on a numeric key in field 2:
csv-sort -n 2 file.csv > file-sortedbykey.csv

• Sort a file on a date-time field with only a date:
(Requires supplying date-time format since no time in field.)
csv-sort -D’%m/%d/%Y’ 5 file.csv > file-sortedbydate.csv

• Sort a file on numeric key field 2 first and date-time field 3 second:
csv-sort-mult -k2n -k3d 5 file.csv > file-sortedbykeydate.csv

• Check whether a CSV file contains embedded special characters:
csv-validate unknown.csv

8

4 The Utilities

4.1 csv-cat

Program to “cat” together one or more CSV files. Purpose is to merge a set of identically-
structured CSV files into a single valid CSV file. Unlike standard cat, this program un-
derstands that CSV file header records need to be treated specially. By default, the header
record from the first argument file only it output (so a valid CSV file is output when all CSV
file arguments contain header records).

Usage: csv-cat [OPTION...] [CSVFILE...]

Options:

-b -- blank records passed through (removed by default)

-h -- header records should all be printed (not just from first CSVFILE)

-o -- omit headers (don’t print any header records)

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-z -- zero (null char) terminate output records (for use with sort, uniq, etc.)

Using this program to cat together multiple CSV files produces valid CSV output only if all
CSV files share the same field structure (same number of fields, same meanings, same order).
Note that no validation is performed to ensure all argument files have identical field counts.
Because of this, the output may not represent a valid CSV format file if fed incompatible
files.

There are additional uses for this program when applied to a single CSV file. For example,
it can be used to strip headers off of a CSV file to start a pipeline (-o option).

By default, blank records are removed (not output). The -b option can be used to pass such
records through. Note that if the initial record(s) are blank, and the -b option is not given,
the header record will be considered the first non-blank record in each file.

The -z option allows csv-cat to be used to read/parse CSV files that contain embedded line-
feeds (\n’s in quoted fields), and feed the resulting records to a program that cannot read
such CSV files since the embedded linefeeds will be interpreted as record/line terminators.
A number of GNU Linux/UNIX utilities have an option that will interpret “lines” as being
terminated by null chars (\0’s) instead of linefeeds. See Integration with Standard Utilities
for further information.

9

Examples of Using csv-cat:

• Merge a set of monthly CSV files (months denoted 01, 02, ..., 12),
each having the same header and format:

csv-cat data-??.csv > data-all.csv

• Merge a set of monthly CSV files that do not have header records:

csv-cat -h data-??.csv > data-all.csv

• Start a pipeline without including CSV file header:

csv-cat -o file.csv | ...

• Use a pipeline with tail to print out the last five records in a CSV file:
(Must use tr to fix record linefeeds.)

csv-cat -z test1.csv | tail -z -n5 | tr ’\0’ ’\n’

10

4.2 csv-clean

Program to “clean” a CSV file in one or more of multiple possible ways:

1. “cleaning” fields (unquoting fields that do not need to be quoted);

2. padding/trimming records to make field counts consistent with header;

3. removing or padding blank records;

4. replacing embedded CR (\r) and LF (\n) characters with text;

5. quoting empty fields;

6. quoting or making empty, unquoted fields that are whitespace only

7. quoting or “cleaning,” unquoted fields that have leading/trailing whitespace

Usage: csv-clean [OPTION...] [CSVFILE]

Options:

-b -- blank records removed

-B -- blank records padded with empty fields (matching header)

-c -- clean quoted fields

(remove double quotes and unescape embedded \"’s if possible)

-d -- delete/trim extra fields when records contain more fields than header

-e -- empty fields quoted (this includes padding fields)

-p -- pad records with empty fields when records contain less fields than header

-r -- replace embedded CR (\r) and LF (\n) characters with text

-sSEPARATOR -- separator string for output fields (comma by default),

intended for use with -u option

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-u -- unquote quoted fields (remove surrounding \"’s and unescape embedded \"’s)

Note: this can leave output as an invalid CSV, so best used with -s option

-v -- verbose: print final cleaning report

-V -- verbose: print warning/error messages about every CSV issue

-w -- whitespace fields quoted

-W -- whitespace fields made empty (can be combined with -e to quote)

-x -- leading/trailing whitespace fields quoted

-X -- leading/trailing whitespace in unquoted fields remove

Default behavior (no options) is to make no changes to the CSV file, but this isn’t useful, so
select different types of cleaning operations with appropriate options. To guarantee a valid
CSV file for output, use the -b/-B, -d, and -p options together. (Use csv-validate to assess
validity and characteristics of a CSV file.)

Field “cleaning” behavior will convert a valid CSV file with unnecessarily quoted fields into
a new valid CSV file with only those fields that must be quoted still quoted. This is useful
for dealing with CSV files produced by systems that always quote all fields. A field in a CSV
file must be quoted if the field contains any of the following characters:

• commas (,)

• double quotes (")

• carriage-returns (\r).

• linefeeds (\n)

11

Fields that contain these embedded characters are left unchanged by this program (unless
the -r or -u options are given). “Cleaning” of quoted fields that do not contain these any
of these embeds:

1. removes the surrounding double quotes;

2. converts embedded, escaped/doubled "’s (double-quotes) to unescaped/single "’s;

CSV files are to have identical numbers of fields in every record (see CSV File Syntax).
This program can “fix” field counts so that every record contains the same number of fields:
padding records deficient in fields with empty fields and trimming fields from records with
extra fields.

Blank records are also not allowed in standard CSV files(see CSV File Syntax). This program
can either remove blank records or pad them with empty fields, in order to produce a valid
CSV file (see the -b and -B options).

Carriage-return and linefeed characters embedded in (quoted) fields can cause issues when
using programs/commands that expect text files. The -r option can be used to convert
such embedded CR/LF characters into text strings, allowing a CSV file to be processed by
standard text file programs. Note that if embedded CR/LF characters are being replaced
with text, this may allow more quoted fields to be unquoted by field “cleaning.”

The text strings that replace embedded CR/LF characters are set at compile time—see
Embedded Characters Replacements. It should be easy to substitute alternative strings
using the sed utility in a pipeline (see examples below).

Empty fields (fields whose value is the “empty string”) can be confusing. The -e option
makes empty values clear with double quotes. Note that the -e option interacts with the -c
option with empty fields.

Fields that consist of only whitespace (spaces/tabs), are sometime produced when a value is
lacking, but they are not the same as an empty field (“empty string”), so can cause issues for
programs processing the CSV file data. The -w and -W options allow modifying such fields.

Unquoted fields that have leading/trailing whitespace characters (spaces/tabs) may be in-
tended to have the whitespace ignored, but this is not in line with RFC 4180 nor how the
CSV Utils programs behave. The -x and -X options allow making clear/correct how to deal
with leading/trailing whitespace in fields.

The unquote (-u) option forces field unquoting, even if the result is an invalid CSV format
field or a field that will make a record incorrect or ambiguous. It is best used only in
conjunction with the -s option and a field separator that does not appear in any of the fields
in the CSV file.

Deatiled warning and error messages about CSV syntax can be shown with the -V option.
Note that CSV syntax errors will cause termination (with failure exit status).

12

Examples of Using csv-clean:

• Turn invalid CSV file into one that meets RFC 4180:

csv-clean -bdp invalid.csv > valid.csv

• “Cleaning” a CSV file of unnecessary quoting:

csv-cat filewquotes.csv

"Field1","Field2","Field3","Field4","Field5"

"A 1 A","A 2 A","A 3 A","A 4 A","A 5 A"

"B 1 B","B 2 B","B 3 B","B 4 B","B 5 B"

"C 1 C","C 2 C","C 3 C","C 4 C","C 5 C"

csv-clean -c filewquotes.csv

Field1,Field2,Field3,Field4,Field5

A 1 A,A 2 A,A 3 A,A 4 A,A 5 A

B 1 B,B 2 B,B 3 B,B 4 B,B 5 B

C 1 C,C 2 C,C 3 C,C 4 C,C 5 C

• Remove blank records, i.e., to make CSV file valid:

csv-cat wblanks.csv

Field1,Field2,Field3,Field4,Field5

A 1 A,A 2 A,A 3 A,A 4 A,A 5 A

B 1 B,B 2 B,B 3 B,B 4 B,B 5 B

C 1 C,C 2 C,C 3 C,C 4 C,C 5 C

D 1 D,D 2 D,D 3 D,D 4 D,D 5 D

empty,,E 3 E,,E 5 E

spaces, ,F 3 F, ,F 5 F

tabs, ,G 3 G, ,G 5 G

both, ,H 3 H, ,H 5 H

csv-clean -b wblanks.csv

Field1,Field2,Field3,Field4,Field5

A 1 A,A 2 A,A 3 A,A 4 A,A 5 A

B 1 B,B 2 B,B 3 B,B 4 B,B 5 B

C 1 C,C 2 C,C 3 C,C 4 C,C 5 C

D 1 D,D 2 D,D 3 D,D 4 D,D 5 D

empty,,E 3 E,,E 5 E

spaces, ,F 3 F, ,F 5 F

tabs, ,G 3 G, ,G 5 G

both, ,H 3 H, ,H 5 H

13

• Pad blank records, i.e., to make CSV file valid:

csv-clean -B wblanks.csv

Field1,Field2,Field3,Field4,Field5

A 1 A,A 2 A,A 3 A,A 4 A,A 5 A

,,,,

B 1 B,B 2 B,B 3 B,B 4 B,B 5 B

C 1 C,C 2 C,C 3 C,C 4 C,C 5 C

,,,,

,,,,

D 1 D,D 2 D,D 3 D,D 4 D,D 5 D

empty,,E 3 E,,E 5 E

spaces, ,F 3 F, ,F 5 F

tabs, ,G 3 G, ,G 5 G

both, ,H 3 H, ,H 5 H

• Pad blank records and quote empty fields:

csv-clean -Be wblanks.csv

Field1,Field2,Field3,Field4,Field5

A 1 A,A 2 A,A 3 A,A 4 A,A 5 A

"","","","",""

B 1 B,B 2 B,B 3 B,B 4 B,B 5 B

C 1 C,C 2 C,C 3 C,C 4 C,C 5 C

"","","","",""

"","","","",""

D 1 D,D 2 D,D 3 D,D 4 D,D 5 D

empty,,E 3 E,,E 5 E

spaces, ,F 3 F, ,F 5 F

tabs, ,G 3 G, ,G 5 G

both, ,H 3 H, ,H 5 H

• Make CSV file with embedded CR/LF’s compatible with standard Linux/UNIX text
file utilities by replacing the embedded characters with text:

csv-clean -r file-wembeds.csv | wc -l

• Substitute alternative replacement strings using sed:

csv-clean -r file-wembeds.csv | sed -e ’s/<CR>/return/g;s/<LF>/newline/g’

14

• Fixing file with nonuniform field counts, with messages and report:

csv-cat notuniform.csv

Field1,Field2,Field3,Field4,Field5

A 1 A,A 2 A,A 3 A,A 4 A,A 5 A

B 1 B,B 2 B,B 3 B,B 4 B,B 5 B,B 6 B

C 1 C,C 2 C,C 3 C,C 4 C

D 1 D,D 2 D,D 3 D,D 4 D,D 5 D,D 6 D

E 1 E,E 2 E,E 3 E,E 4 E,E 5 E

F 1 F,F 2 F,F 3 F

csv-clean -dpvV notuniform.csv

Field1,Field2,Field3,Field4,Field5

A 1 A,A 2 A,A 3 A,A 4 A,A 5 A

B 1 B,B 2 B,B 3 B,B 4 B,B 5 B

csv-clean: Warning: record #3 has more fields than header (6 vs 5), trimming

C 1 C,C 2 C,C 3 C,C 4 C,

csv-clean: Warning: record #4 has less fields than header (4 vs 5), padding

D 1 D,D 2 D,D 3 D,D 4 D,D 5 D

csv-clean: Warning: record #5 has more fields than header (6 vs 5), trimming

E 1 E,E 2 E,E 3 E,E 4 E,E 5 E

F 1 F,F 2 F,F 3 F,,

csv-clean: Warning: record #7 has less fields than header (3 vs 5), padding

Cleaning Report:

Number of records read in total: 7

Number of header fields: 5

Number of fields cleaned: 0

Number of fields unquoted: 0

Number of records with fields padded: 2

Number of records with fields trimmed: 2

Number of blank records removed: 0

Number of blank records padded: 0

Number of empty fields quoted: 0

Number of embedded CRs replaced: 0

Number of embedded LFs replaced: 0

15

4.3 csv-counts-fields

Program to print out and check fields counts for records in a CSV file. When checking field
counts, the fields count for the header record, record #1, is taken as the correct count.

Usage: csv-counts-fields [OPTION...] [CSVFILE]

Options:

-c -- counts only, do not print record number prefixes

-fFIRST -- first record to print fields count for (1-based index, header is 1, the default)

-h -- print header (record #1) fields count even if header not in records range

-m -- mismatches only: print fields counts for records that differ from header

-nNUMBER -- number of records to check (default is all from FIRST)

-v -- verbose: mark records where fields count differs from header

By default, shows counts for header (record 1) and all records, prefixed by record number.
Options allow instead showing:

• counts only for records where the counts are incorrect (differ from header);

• counts for a limited range of records;

• bare counts (without record number prefixes);

16

Examples of Using csv-counts-fields:

• Show field counts of all records, with record number prefixes:

csv-counts-fields notuniform.csv

1:5

2:5

3:6

4:4

5:6

6:5

7:3

• Show field counts of all records, marking incorrect counts:

csv-counts-fields -v notuniform.csv

1:5

2:5

3:6*

4:4*

5:6*

6:5

7:3*

• Show counts only for records with incorrect counts:

csv-counts-fields -m notuniform.csv

3:6

4:4

5:6

7:3

• Show field count (only) of header:

csv-counts-fields -c -n1 file.csv

5

• Show field count (only) of record #4:

csv-counts-fields -c -f4 -n1 notuniform.csv

4

• Show field counts of select records, and include header:

csv-counts-fields -h -f4 -n3 notuniform.csv

1:5

4:4

5:6

6:5

• Show field counts of select records, marking incorrect counts:

csv-counts-fields -v -f4 -n3 notuniform.csv

4:4*

5:6*

6:5

17

4.4 csv-counts-records

Program to print out counts of the number of records in one or more CSV files.

Usage: csv-counts-records [OPTION...] [CSVFILE...]

Options:

-h -- header records should NOT be counted (counted by default)

-v -- not verbose: do NOT print filenames to prefix counts

18

Examples of Using csv-counts-records:

• Show count of records in a file, counting header:

csv-counts-records test1.csv

6:test1.csv

• Show count of records in a file, not counting header:

csv-counts-records -h test1.csv

5:test1.csv

• Show count of records in a file, count only:

csv-counts-records -v test1.csv!

6

• Show counts of records in multiple files:

csv-counts-records test?.csv

6:test1.csv

99:test2.csv

24:test3.csv

19

4.5 csv-cut

Program to “cut” (print out) only specified fields from the records in a CSV file. Purpose
is to reduce the dimensionality of a CSV file, by producing a CSV file with only the needed
subset of fields. Can also be used to reorder fields, e.g., so a “key” field occurs first.

Usage: csv-cut [OPTION...] FIELDS_LIST [CSVFILE]

FIELDS_LIST must be a comma-separated list of 1-based field index specs:

numbers (e.g., 3), ranges (e.g., 3-6), or unbounded range (e.g., 3-) as final entry,

or header field names if -Q option.

Options:

-a -- allow FIELDS_LIST specs to refer to fields beyond those in the header

(may create empty fields)

-b -- blank records passed through (removed by default, see also -1)

-e -- error terminate if FIELDS_LIST entries missing from record

(replaced with empty fields by default)

-l -- limit fields for unbounded FIELDS_LIST spec (e.g., 5-) to number of header fields

-o -- omit header field(s) from output

-Q -- query header to get indices of FIELDS_LIST field names

-r -- reverse meaning of FIELDS_LIST: print out all fields EXCEPT those specified

-sSEPARATOR -- output field separator (comma by default)

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-w -- warn about missing fields and fields not in header (with -a option)

-z -- zero (null char) terminate output records (for use with sort, uniq, etc.)

-1 -- interpret blank record as having a single empty field (see also -b)

Similar in purpose to the Linux/UNIX cut utility, but this program works properly with
all CSV files, since it handles quoted CSV fields that can contain embedded commas (,’s),
carriage-returns (\r’s), and/or linefeeds (\n’s).

Since CSV Utils generally aim to produce valid CSV output, csv-cut’s default behavior is
as follows:

• the number of fields in the header is taken as the standard for the CSV output;

• FIELDS_LIST specs outside of the number of header fields will cause an error (see -a

option to allow);

• FIELDS_LIST fields missing from a record will result in empty fields in the output
records;

• blank records are removed (see -b option to pass through);

• -1 option causes blank records to be interpreted as having a single empty field (such
records would be ambiguous in “CSV files” with single fields);

An unbounded FIELDS_LIST spec like “4-” will result in empty fields being added to records
with less than the number of header fields, and fields beyond the number of header fields
being output in records with such fields (see -l option).

20

Examples of Using csv-cut:

• Remove unwanted fields (reduce dimensionality) of a CSV file:

csv-cut 1,3,6-8,10,18- alldata.csv > keydata.csv

• Reorder the fields of a CSV file:

csv-cut 5,12-14,11,1-4,6-10,15- alldata.csv > reordered.csv

• Get a field’s set of unique values (without header name being included):

csv-cut -o 5 | sort -u

• Sum the values in an integer field of a CSV file:
(Skips header, uses AWK to do the computation.)

csv-cut -o 8 data.csv | awk -e ’/[0-9]+/{sum+=$0};END{print sum}’

• Extract a single field out of a CSV file, using the field name:

csv-cut -Q ID data.csv > IDs.csv

• Create a data file from a numeric field in a CSV file:

csv-cut -oQ Age data.csv > ages.dat

• Create a new file excluding single private field, using the field name:

csv-cut -rQ SSN personnel.csv > personnel-anonymized.csv

21

4.6 csv-edit

Program to edit (replace) the value of one field in one record in a CSV file. I.e., this program
allows you to edit a single field in a CSV file, without having to open the file in a spreadsheet
program or text editor.

Usage: csv-edit [OPTION...] RECORD FIELD NEWVALUE [CSVFILE]

RECORD is the 1-based record number to operate on.

FIELD is the 1-based field index to operate on.

NEWVALUE is the replacement value of the specified field.

(NEWVALUE can contain ’&’ to be substituted by the previous value of the field.)

Options:

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

The CSV Utils are not intended to be used for minor editing of CSV files, such as correcting a
field value in one or two records, etc. Nonetheless, csv-edit was added to make it easy to replace
the value of one field in one record. More involved editing of individual fields is best accomplished
using spreadsheet programs like LibreOffice Calc, or even a text editor.

22

Examples of Using csv-edit:

• Change header field #3:

csv-edit 1 3 CSVFILE > CSVFILE-NEW

• Adding double quotes around field 3 in record 15:

csv-edit 15 3 ’"&"’ CSVFILE > CSVFILE-NEW

• Including a literal ampersand in a new field value:

csv-edit 1 5 ’Street_Number\&Name’ CSVFILE > CSVFILE-NEW

23

4.7 csv-format

Program to print out a CSV file formatted in a readable manner, as text. That is, to produce
columnized text from the contents of the fields.

Usage: csv-format [OPTION...] [CSVFILE]

Options:

-a -- allow CSVFILE to have nonuniform field counts

-b -- blank records passed through (removed by default)

-c -- center fields (left justify by default)

-fWIDTH -- fixed field width to use for all fields

-mWIDTH -- minimum field width to use, overrides automatically determined widths

-nNUMRECS -- number of records to use to determine field widths (10 by default)

-r -- right justify fields (left by default)

-sSEPARATOR -- separator between field values (single space by default)

-u -- unquote quoted fields before printing: remove surrounding "’s,

unescape embedded "’s, and replace embedded CR’s/LF’s with text

-wWIDTHS -- comma-separated list of fields widths

e.g., -w10,12,10,15,20 (must have enough values for all records)

-xWIDTH -- field width to use for extra fields (beyond header or -w spec)

The default separator between fields is just a single space, to keep lines as short as possible.
Readability can be improved by using the -s option to have longer or more visible separator
strings.

If output is too long to view on the “terminal” (output lines get wrapped), redirect the output to
a file and use a text editor to view it.

By default, maximum field widths will be determined by examining the first 10 records (including
the header). More or less records can be examined using the -n option. Alternatively, field widths
can be manually specified with the -f or -w options.

Records are required to have uniform numbers of fields (i.e., same as header) unless the -a option
is given. If the -a option needs to be used due to records with additional fields, one will have to
make sure a width to use for the extra fields is known. This might be done via the -f, -w, or -x
options.

Since quoting is done simply to make CSV files with embedded commas/carriage-returns/linefeeds
unambiguous, quoted fields do not represent the “true contents” of a field, so use of the unquote
(-u) option may be desirable. This option will strip the double quotes surrounding each field,
unescape embedded double-quotes, and replace any embedded CR’s/LF’s with text so readable.

24

Sample CSV Files:

• test.csv:

Field1,"Field2",Field3,"Field4",Field5

A 1 A,"A2",A 3 A 3 A,"A 4 A,""4"",A",5 A

B 1 B,"B2",B 3 B 3 B,"B 4 B,""4"",B",5 B

C 1 C,"C2",C 3 C 3 C,"C 4 C,""4"",C",5 C

• Note that:

– Field #2 is quoted, but contains no embeds.

– Field #4 is quoted, and non-header records contain embedded
commas and (escaped) double-quotes

Examples of Using csv-format:

• Basic formatting, auto width determination:

csv-format test.csv

Field1 "Field2" Field3 "Field4" Field5

A 1 A "A2" A 3 A 3 A "A 4 A,""4"",A" 5 A

B 1 B "B2" B 3 B 3 B "B 4 B,""4"",B" 5 B

C 1 C "C2" C 3 C 3 C "C 4 C,""4"",C" 5 C

• Increasing spacing between fields:

csv-format -s’ ’ test.csv

Field1 "Field2" Field3 "Field4" Field5

A 1 A "A2" A 3 A 3 A "A 4 A,""4"",A" 5 A

B 1 B "B2" B 3 B 3 B "B 4 B,""4"",B" 5 B

C 1 C "C2" C 3 C 3 C "C 4 C,""4"",C" 5 C

• Unquoting fields for readability:

csv-format -us’ ’ test.csv

Field1 Field2 Field3 Field4 Field5

A 1 A A2 A 3 A 3 A A 4 A,"4",A 5 A

B 1 B B2 B 3 B 3 B B 4 B,"4",B 5 B

C 1 C C2 C 3 C 3 C C 4 C,"4",C 5 C

• Centering output within the columns:

csv-format -cus’ ’ test.csv

Field1 Field2 Field3 Field4 Field5

A 1 A A2 A 3 A 3 A A 4 A,"4",A 5 A

B 1 B B2 B 3 B 3 B B 4 B,"4",B 5 B

C 1 C C2 C 3 C 3 C C 4 C,"4",C 5 C

25

• Right justifying output within the columns:

csv-format -rus’ ’ test.csv

Field1 Field2 Field3 Field4 Field5

A 1 A A2 A 3 A 3 A A 4 A,"4",A 5 A

B 1 B B2 B 3 B 3 B B 4 B,"4",B 5 B

C 1 C C2 C 3 C 3 C C 4 C,"4",C 5 C

• Using fixed field width:

csv-format -f15 test.csv

Field1 "Field2" Field3 "Field4" Field5

A 1 A "A2" A 3 A 3 A "A 4 A,""4"",A" 5 A

B 1 B "B2" B 3 B 3 B "B 4 B,""4"",B" 5 B

C 1 C "C2" C 3 C 3 C "C 4 C,""4"",C" 5 C

• Specifying field widths:

csv-format -uw10,10,20,20,10 test.csv

Field1 Field2 Field3 Field4 Field5

A 1 A A2 A 3 A 3 A A 4 A,"4",A 5 A

B 1 B B2 B 3 B 3 B B 4 B,"4",B 5 B

C 1 C C2 C 3 C 3 C C 4 C,"4",C 5 C

• Using alternative field separator string (unquoted fields):

csv-format -us:: test.csv

Field1::Field2::Field3 ::Field4 ::Field5

A 1 A ::A2 ::A 3 A 3 A::A 4 A,"4",A::5 A

B 1 B ::B2 ::B 3 B 3 B::B 4 B,"4",B::5 B

C 1 C ::C2 ::C 3 C 3 C::C 4 C,"4",C::5 C

• Using tab separators via Bash “C strings” (works well given consistent field widths):

csv-format -us$’\t’ test.csv

Field1 Field2 Field3 Field4 Field5

A 1 A A2 A 3 A 3 A A 4 A,"4",A 5 A

B 1 B B2 B 3 B 3 B B 4 B,"4",B 5 B

C 1 C C2 C 3 C 3 C C 4 C,"4",C 5 C

26

4.8 csv-get-field

Program to “get” (print to stdout) the value of a single field from the next CSV record from
standard input. It is intended to be called in scripts and pipelines, replacing the use of AWK or
similar to extract CSV fields. Reads next record from standard input and writes the specified field
to standard output (followed by a linefeed).

Usage: csv-get-field [OPTION...] FIELD

FIELD is the 1-based index of the field to get/print.

Options:

-c -- clean quoted field if result is still a valid CSV field

(remove double quotes and unescape embedded "’s)

-e -- error terminate if FIELD does not exist in a record

-u -- unquote quoted FIELD (remove surrounding "’s and unescape embedded "’s);

-u takes precedence over -c if both supplied;

Note: can return an invalid CSV field

-v -- verbose: print any CSV syntax error messages (suppressed by default)

-w -- print warning if FIELD does not exist in a record

By default, this program prints an empty string value (i.e., outputs blank line) if the specified field
does not exist in the next record. This behavior can be modified using -e and -v options (see
above).

Note that each run of this utility reads just the next CSV record from standard input and outputs
the single field value from that record. The offset for standard input will be advanced to the end of
the next CSV record only. Because of this, csv-get-field can be used in a loop to move through
a CSV file (see below examples).

csv-cut can perform the same basic field extraction action as csv-get-field, but has more
complicated syntax and will be slightly slower to extract a single field from a record. Since csv-cut
automatically loops through all records in the argument file/stream, it is directly usable as a
Linux/UNIX “filter” program, to pass on only a particular field(s) from a stream of CSV records.
Using csv-get-field as a pipeline filter would require embedding it in shell loop. The intended use
for csv-get-field is to exact a single field from a record that has already been read or otherwise
obtained (see below examples).

A failure exit status is returned if stdin is at “file-end”, a CSV parsing error occurs, or the specified
field is missing and the -e option was given.

27

Example Shell Script Usage of csv-get-field:

Use in shell script to obtain CSV record fields, when CSV records read/obtained separately:

#!/usr/bin/bash

... get CSV record into variable record ...

firstname=$(echo "$record" | csv-get-field 1)

lastname=$(echo "$record" | csv-get-field 2)

id=$(echo "$record" | csv-get-field 5)

gpa=$(echo "$record" | csv-get-field 12)

... use extracted record information ...

Use in a shell script that loops through CSV file records using Bash read:

#!/usr/bin/bash

datefield=$1

csvfile=$2

...

recnum=1

while read record; do

Skip header:

if [[$recnum == 1]]; then continue; fi

date=$(echo "$record" | csv-get-field $datefield)

...use variable date as desired...

recnum=$((recnum+1))

done < "$csvfile"

...

Note that above script will have problems with CSV files that contain embedded linefeeds (\n’s)!
See example below, or use csv-get-record instead.

Alternative shell script that shows how to use csv-get-field to loop through CSV file records
getting single fields out of each:

#!/usr/bin/bash

datefield=$1

csvfile=$2

...

recnum=1

while date=$(csv-get-field "$datefield"); do

Skip header:

if [[$recnum == 1]]; then continue; fi

...use variable date as desired...

recnum=$((recnum+1))

done < "$csvfile"

...

28

4.9 csv-get-record

Program to “get” (print to stdout) the next CSV record from a CSV file stream passed to it via
standard input. It is intended to be called in scripts and pipelines, replacing the use of AWK or
similar to extract CSV fields. Reads next record from standard input and writes the entire record
to standard output. Each record that is output is followed by termination string: linefeed (\n) by
default, CR+LF (\r\n) with -t option, or null char (\0) if -z option.

Usage: csv-get-record [OPTION...]

Options:

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-v -- verbose: print any CSV syntax error messages (suppressed by default)

-z -- zero (null char) terminate output records (for use with sort, uniq, etc.)

Reads just the next CSV records from standard input, outputting that single record for each call.
The offset for standard input will be advanced to the end of the next CSV record only. Because of
this, csv-get-record can be used in a loop to move through a CSV file (see below example).

A failure exit status is returned if stdin is at “file-end” or a CSV parsing error occurs. This makes
the program compatabile with use in a shell while loop, for example.

29

Example Shell Script Usage of csv-get-record:

Read through all records in a CSV file:

#!/usr/bin/bash

csvfile=$1

...

while record=$(csv-get-record); do

... use variable record as desired ...

done < "$csvfile"

30

4.10 csv-grep

Program to “grep” a particular field in a CSV file, to select/remove records where field matches a
pattern. Can handle regex and fixed string patterns (fixed string only when patterns come from a
file). Options are similar to standard grep.

Usage: csv-grep [OPTION...] FIELD PATTERN [CSVFILE]

Usage: csv-grep [OPTION...] -fPATTERN_FILE FIELD [CSVFILE]

FIELD is the 1-based index of the field to grep, or header field name if -Q option.

PATTERN is the regex or string pattern to match.

(PATTERN assumes extended regex syntax, so do not escape regex metachars).

Options:

-b -- blank records passed through (ignored by default, see also -1)

-fFILE -- read fixed string PATTERNs from FILE

-F -- interpret PATTERN as a fixed string

-h -- process header record (passed through by default)

-i -- ignore case when matching PATTERN

-mNUM -- stop after NUM matches

-n -- prefix each line of output with the 1-based line number

-o -- omit header record (not grep’d, not passed through)

-q -- suppress all output, look at exit status

-Q -- query header to get index of FIELD name

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-u -- unquote quoted FIELD before applying grep pattern

(remove surrounding "’s and unescape embedded \"’s)

-v -- invert match (i.e., select non-matching)

-w -- warn about records lacking FIELD (such records are ignored)

-x -- exactly match the (entire) field with PATTERN

-1 -- interpret blank record as having a single empty field (see also -b)

Uses Linux/UNIX regex utilities, with POSIX Extended Regular Expression option. This means
that there is no need to escape regex metacharacters in regex patterns. See “man 7 regex” for more
info.

By default, header records are passed through automatically to the output. The -h and -o options
can be used to change this behavior.

Records that lack FIELD are ignored (not tested or passed through), since they cannot be grep’d.
The -w option will cause warnings about such records.

Blank records are also ignored (not tested or passed through), since they won’t have FIELD, so
cannot be grep’d. See, however, the -1 option.

This program does not use sophisticated matching algorithms as (GNU) grep does. This is rea-
sonable since with most CSV files, field values to match against tend to be relatively short, so
highly efficient matching algorithms that require preprocessing of patterns are unlikely to result in
much/any speedup.

31

Examples of Using csv-grep:

• Remove records where field 2 is empty:
(will also remove any “blank” records)

csv-grep -Fvx 2 ’’ file.csv > file-woempty.csv

• Remove records where field 2 is “blank” (empty/whitespace):

csv-grep -vx 2 ’[[:space:]]*’ file.csv > file-woblanks.csv

• As previous, but using field name:

csv-grep -vxQ ID ’[[:space:]]*’ file.csv > file-woblank-ids.csv

• Get records (plus header) where year in date field 5 is ≥ 2000:

csv-grep 5 ’20[0-9]{2}’ file.csv > file-2000.csv

• Get records (w/header) where field 3 is a (positive) integer:

csv-grep -x 3 ’[0-9]+’ file.csv > file-wints.csv

• Get records (w/header) where field 3 is not a negative number:

csv-grep -v ’^-[0-9]+’ file.csv > file-wonegs.csv

• Produce a data file with all positive integer values from field 3:

csv-grep -ox 3 ’[0-9]+’ file.csv | csv-cut 3 > field.data

• Get records (w/header) where field 8 contains the word “diagnosis” (any case):

csv-grep -Fi 8 diagnosis medical.csv > diagnosis.csv

• Get records (w/header) where IDs in field 1 match those in file ids.txt:
(Use -u to deal with field values possibly being quoted.)

csv-grep -ux -fids.txt 1 medical.csv > patients.csv

• Get records (w/header) where IDs in field 1 do not match any of those in file ids.txt:

csv-grep -vx -fids.txt 1 medical.csv > patients.csv

Multiple fields may be selected on by pipelining multiple csv-grep calls together:
csv-grep -x 1 ’[0-9]+’ CSVFILE | csv-grep -vx 2 ’’ > CSVFILE-SELECT

(Produce a new CSV file where one field 1 contains only integers and field 2 is not empty.)

Entire records (i.e., multiple fields) can be selected on using standard grep—as long as the CSV
file does not contain embedded linefeeds (\n’s): grep PATTERN CSVFILE > CSVFILE-SELECT

If the CSV file contains embedded linefeeds, a pipeline can be used with the -z option of csv-records:
csv-records -z 1 CSVFILE-WEMBEDS | grep -z PATTERN | tr ’\0’ ’\n’ > CSVFILE-SELECT

32

4.11 csv-grep-cond

Program to “grep” a particular field in a CSV file, to select/remove records where field meets
some condition. Options are consistent with standard grep. A condition is specified using an AWK
Expression: AWK code that evaluates to a value. See the AWK info below, plus the AWK Code

section, for more information on AWK.

Usage: csv-grep-cond [OPTIONS] FIELD CONDITION [CSVFILE]

FIELD is the 1-based index of the field to grep, or header field name if -Q option.

Options:

-b -- blank records passed through (ignored by default, see also -1)

-h -- process header record (passed through by default)

-lLIB_FILE -- load AWK functions/library file LIB_FILE

-mNUM -- stop after NUM matches

-n -- prefix each line of output with the 1-based line number

-o -- omit header record (not grep’d, not passed through)

-q -- quiet: suppress all output, look at exit status

-Q -- query header to get index of FIELD name

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-u -- unquote quoted FIELD before testing CONDITION

(remove surrounding "’s and unescape embedded "’s)

-v -- invert match (i.e., select non-matching)

-w -- warn about records lacking FIELD (such records are ignored)

-1 -- interpret blank record as having a single empty field (see also -b)

CONDITION is to be a single AWK Expression, i.e., AWK code that results in a value.

The AWK code will receive FIELD’s values in successive CSVFILE records as input "records."

E.g., CSV record "A,2,C" and FIELD of 2, will result in CONDITION having $0 be "2".

Records where CONDITION’s value is 1 (or other non-zero) are considered matched.

Records where CONDITION’s value is 0 (or "") are considered non-matched.

Example CONDITION: ’($0>=10 && $0<=20) || ($0>100)’

Since general AWK expression code—including standard and user-defined functions—can be used
to represent a condition, this program can implement more sophisticated evaluation of a field than
csv-grep. However, csv-grep is simpler and faster when regex or substring patterns suffice.

By default, header records are passed through automatically to the output. The -h and -o options
can be used to change this behavior.

Records that lack FIELD are ignored (not tested or passed through), since they cannot be grep’d.
The -w option will cause warnings about such records.

Blank records are also ignored (not tested or passed through), since they won’t have FIELD, so
cannot be grep’d. See, however, the -1 option.

33

Examples of Using csv-grep-cond:

• Get records (w/header) where field 2 is between 100 and 200:

csv-grep-cond 2 ’($0>=100)&&($0<=200)’ file.csv

• Using user-defined library functions:

csv-grep-cond -lmathfuncs.awk 2 ’abs($0)<=10’ file.csv

• Using AWK string functions:
(Select records where field 5 has more than 10 characters or digits.)

csv-grep-cond 5 ’length($0)>10’ file.csv

• Selecting on multiple fields by pipelining multiple csv-grep-cond calls together:
(Produces a new CSV file where field 1 is greater than 100 and field 2 is less than 200.)

csv-grep-cond 1 ’$0>100’ file.csv | csv-grep-cond 2 ’$0<200’ > select.csv

AWK Coding Requirements for csv-grep-cond:

• Code must be a valid AWK condition.

• Does not modify RS or ORS.

• Does not call print or printf.

• Does not call next or nextfile.

AWK Expressions:

The FIELD for each successive CSV record will be available in the AWK CONDITION code as $0.
CONDITION must be an AWK expression: AWK code that evaluates to a value. The resulting value
of the expression code for each record determines whether the record is considered matched or not
matched:

• values of 1 (or any other non-zero value) are considered matched;

• values of 0 (or ””) are considered not matched;

Note that AWK expressions are not AWK “programs”. AWK program code cannot be used as
CONDITION, an AWK error will result. See the AWK Code section for more information on AWK.

34

4.12 csv-grep-cond-records

Program to “grep” records in a CSV file, to select/remove records that meet some condition.
Options are consistent with standard grep. A condition is specified using an AWK Expression:

AWK code that evaluates to a value. See the AWK info below, plus the AWK Code section, for
more information on AWK.

Usage: csv-grep-cond-records [OPTIONS] CONDITION [CSVFILE]

Options:

-b -- blank records grep’d (removed by default)

-h -- process header record (passed through by default)

-lLIB_FILE -- load AWK functions/library file LIB_FILE

-mNUM -- stop after NUM matches

-n -- prefix each line of output with the 1-based line number

-o -- omit header record (not grep’d, not passed through)

-q -- quiet: suppress all output, look at exit status

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-v -- invert match (i.e., select non-matching)

CONDITION is to be a single AWK Expression, i.e., AWK code that results in a value.

The AWK code will receive each successive CSVFILE record as an input "record" ($0).

I.e., each CSVFILE record will be available as $0, with its fields as $1, $2, etc.

Records where CONDITION’s value is 1 (or other non-zero) are considered matched.

Records where CONDITION’s value is 0 (or "") are considered non-matched.

Example CONDITION: ’$1>=20 || ($2!="0" && $3!="Admit")’

Unlike csv-grep-cond, conditions here can evaluate multiple fields of a record. While multiple fields
may be and-selected on by pipelining csv-grep-cond calls together, this program can implement more
complex logic involving multiple fields of records. Nonetheless, csv-grep-cond will be faster when
evaluating a single field. Likewise, csv-grep will be the fastest when regex or substring patterns
(applied to a single field) suffice for selection.

By default, header records are passed through automatically to the output. The -h and -o options
can be used to change this behavior.

Blank records in CSVFILE are ignored (not tested or passed through). See, however, the -b option.

35

Examples of Using csv-grep-cond-records:

• Get records (w/header) where field 2 is greater than 100 and field 3 is less than 200:

csv-grep-cond-records ’($2>100)&&($3<200)’ file.csv

• Using user-defined library functions:

csv-grep-cond-records -lmathfuncs.awk ’(abs($1)<=10)||(int($5)==$5)’ file.csv

• Get records where fields 5 and 10 have the same value:

csv-grep-cond-records ’$5==$10’ file.csv

AWK Coding Requirements for csv-grep-cond-records:

• Code must be a valid AWK condition.

• Does not modify RS, FS, ORS, OFS, FPAT.

• Does not call print or printf.

• Does not call next or nextfile.

AWK Expressions:

The fields of each successive CSV record will be available in the AWK CONDITION code as $1,$2,
etc. CONDITION must be an AWK expression: AWK code that evaluates to a value. The resulting
value of the expression code for each record determines whether the record is considered matched
or not matched:

• values of 1 (or any other non-zero value) are considered matched;

• values of 0 (or ””) are considered not matched;

Note that AWK expressions are not AWK “programs”. AWK program code cannot be used as
CONDITION, an AWK error will result. See the AWK Code section for more information on AWK.

36

4.13 csv-join

Program to “join” (append) records from a second CSV file with “matching” records in a first CSV
file. Records are considered to match if their key field values are identical. Output is a valid CSV
file with fields from both argument CSV files.

Usage: csv-join [OPTION...] KEYFIELD1 CSVFILE1 KEYFIELD2 [CSVFILE2]

KEYFIELD1 is the 1-based index of the key field in CSVFILE1,

or header field name if -Q option.

KEYFIELD2 is the 1-based index of the key field in CSVFILE2,

or header field name if -Q option.

Options:

-a -- allow CSVFILE2 to lack matching records

-o -- identically ordered keys in files, so can be efficient finding match in CSVFILE2

when using -a option (Note: all CSVFILE2 keys must match a CSVFILE1 key!)

-Q -- query header to get index of FIELD name

-sSEPARATOR -- separator between CSVFILE records (comma by default)

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-u -- unquote quoted KEYFIELDs before comparing

(remove surrounding "’s and unescape embedded "’s)

-v -- verbose: print final report about join operations

To have a predictable output, key values must be unique in each file. I.e., there must be at most a
single record with each key value in both files. If keys are not unique in either file, the results will
depend on the particular order records occur in the files. In other words, the resulting CSV is not
predictable, and likely to not make sense.

CSVFILE1 is considered the base CSV file to which information is being added. The output is to
be a valid CSV file, with the same number of records as CSVFILE1, and all records must have the
exact same number of fields: the sum of the number of fields in CSVFILE1 plus those in CSVFILE2

(headers taken as the standard counts). Note that this implies that the key fields from both files
get included in the output. This is done because the fields may have different names or may be
desired as reference points in the final output. Should only one instance be wanted, this can easily
be achieved by using csv-cut (e.g., in a pipeline after csv-join).

By default, it is required that there be a matching record in CSVFILE2 for each record in CSVFILE1.
There can, however, be “extra” records in CSVFILE2 (i.e., whose keys do not match records in
CSVFILE1). Such records are ignored (since, again, CSVFILE1 is considered the base CSV file being
added to).

If some records in CSVFILE1 will not have matches in CSVFILE2, the -a option must be used. In
this case, unmatched records in CSVFILE1 will have an appropriate number of empty fields added
to ensure the resulting output is valid CSV format (all records with same number of fields).

The CSV files do not need to be sorted on the key fields to use this function. However, speed will
be fastest if the files are sorted identically on the key fields. With CSV files with many records,
the speed difference can be very significant. This means that it may be faster to use csv-sort to
create argument files before running this program. One can also use Bash process substitution to
avoid creating intermediate sorted files (see examples below).

37

When some records in CSVFILE1 may not have matches in CSVFILE2 and the -a option is used,
having the keys in the files ordered identically can greatly increase efficiency, since it will avoid
having to search CSVFILE2 for every non-existent match. When the files have their keys ordered
identically, use the -o option with the -a option. Be aware, however, that with these two options
in use, all CSVFILE2 keys must match a CSVFILE1 key!

Sample CSV files:

• people1.csv:

ID,Last_Name,First_Name,Street,Apt,City,State,Zip

111111111,Smith,John,111 Main St,,Chicago,IL,66601

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

• people2.csv (note extra ID record):

ID,Last_Name,First_Name,Sex,Birthdate,Birth City

444444444,Harris,Beth,F,10/30/1987,St. Louis

333333333,Carter,Robert,M,05/23/2000,Denver

555555555,Smith,Susan,F,06/3/1955,New York

111111111,Smith,John,M,03/15/1945,Chicago

222222222,Jones,Mary,F,12/01/1990,Memphis

Examples of Using csv-join:

• Basic join of two files:

csv-join 1 people1.csv 1 people2.csv

ID,Last_Name,First_Name,Street,Apt,City,State,Zip,ID,Last_Name,First_Name,Sex,Birthdate,Birth City

111111111,Smith,John,111 Main St,,Chicago,IL,66601,111111111,Smith,John,M,03/15/1945,Chicago

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304,444444444,Harris,Beth,F,10/30/1987,St. Louis

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209,333333333,Carter,Robert,M,05/23/2000,Denver

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001,222222222,Jones,Mary,F,12/01/1990,Memphis

• Join two files as above, but then sort on key and remove duplicated fields:

csv-join 1 people1.csv 1 people2.csv | csv-sort -hn 1 | csv-cut 1-8,12-

ID,Last_Name,First_Name,Street,Apt,City,State,Zip,Sex,Birthdate,Birth City

111111111,Smith,John,111 Main St,,Chicago,IL,66601,M,03/15/1945,Chicago

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001,F,12/01/1990,Memphis

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209,M,05/23/2000,Denver

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304,F,10/30/1987,St. Louis

38

• Join of two files, first file has record with unmatched key:

csv-join 1 people2.csv 1 people1.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,ID,Last_Name,First_Name,Street,Apt,City,State,Zip

444444444,Harris,Beth,F,10/30/1987,St. Louis,444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

333333333,Carter,Robert,M,05/23/2000,Denver,333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

555555555,Smith,Susan,F,06/3/1955,New York

Error: CSVFILE2 does not have matching record for key: 555555555

• Same as last example, except allow unmatched records with -a option:

csv-join -a 1 people2.csv 1 people1.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,ID,Last_Name,First_Name,Street,Apt,City,State,Zip

444444444,Harris,Beth,F,10/30/1987,St. Louis,444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

333333333,Carter,Robert,M,05/23/2000,Denver,333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

555555555,Smith,Susan,F,06/3/1955,New York,,,,,,,,

111111111,Smith,John,M,03/15/1945,Chicago,111111111,Smith,John,111 Main St,,Chicago,IL,66601

222222222,Jones,Mary,F,12/01/1990,Memphis,222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

• Same as last example, except incorrectly adding -o option even though files not
identically ordered:

csv-join -ao 1 people2.csv 1 people1.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,ID,Last_Name,First_Name,Street,Apt,City,State,Zip

444444444,Harris,Beth,F,10/30/1987,St. Louis,,,,,,,,

333333333,Carter,Robert,M,05/23/2000,Denver,,,,,,,,

555555555,Smith,Susan,F,06/3/1955,New York,,,,,,,,

111111111,Smith,John,M,03/15/1945,Chicago,111111111,Smith,John,111 Main St,,Chicago,IL,66601

222222222,Jones,Mary,F,12/01/1990,Memphis,222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

• Same as last example, except using Bash process substituation to ensure identically ordered
records:

csv-join -ao 1 <(csv-sort 1 people2.csv) 1 <(csv-sort 1 people1.csv)

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,ID,Last_Name,First_Name,Street,Apt,City,State,Zip

111111111,Smith,John,M,03/15/1945,Chicago,111111111,Smith,John,111 Main St,,Chicago,IL,66601

222222222,Jones,Mary,F,12/01/1990,Memphis,222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

333333333,Carter,Robert,M,05/23/2000,Denver,333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,F,10/30/1987,St. Louis,444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

555555555,Smith,Susan,F,06/3/1955,New York,,,,,,,,

39

4.14 csv-names2nums

Program to convert a list of CSV file field names to the field numbers (as used by other CSV Utils
programs).

Usage:csv-names2nums [OPTIONS...] FIELD_NAMES_LIST CSVFILE

OPTIONS:

-n -- output linefeed (\n) after output list (just list by default)

The input and output lists are to be comma-separated lists, e.g.: Last_Name,First_Name,SS_NUM,
5,6,37. They can also be a single field name or number.

Note that this program reads the header from its CSVFILE argument. Because of this, it cannot be
used as part of a pipeline and requires a CSV file argument (not standard input).

Examples of Using csv-names2nums:

• Determining single field’s number:

csv-names2nums SS_Num file.csv

37

• Determining list of field numbers:

csv-names2nums Last_Name,First_Name,SS_Num file.csv

5,6,37

• Using field names with csv-cut instead of using the -Q option:

csv-cut $(csv-names2nums Last_Name,First_Name,SS_Num file.csv) file.csv

• Storing a field number in a Bash variable (so can reuse repeatedly):

field=$(csv-names2nums SS_Num file.csv)

csv-grep $field 123456789 file.csv

...

40

4.15 csv-paste

Program to “paste” (i.e., append) corresponding records from a second CSV file onto the records
from a first CSV file. It is intended to be used to combine data for the same set of keys/individuals,
from two separate CSV files, where the records in both files are sorted identically on the keys/individuals.

Usage: csv-paste [OPTION...] CSVFILE1 [CSVFILE2]

Options:

-a -- allow CSVFILE2 records to have variable numbers of fields

-m -- mismatches of record counts allowed, CSVFILE1 > CSVFILE2 (must be equal by default)

-M -- mismatches of record counts allowed, CSVFILE1 < CSVFILE2 (must be equal by default)

-p -- pad CSVFILE2 records with empty fields when records contain less fields than header

-sSEPARATOR -- separator between CSVFILE records (comma by default)

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-v -- verbose: print final report about paste operations

-1 -- interpret blank record as having a single empty field

CSVFILE1 is considered the base CSV file to which information is being added. By default, CSVFILE1
and CSVFILE2 are to have identical numbers of records, and all records in CSVFILE2 are to have
identical numbers of fields. Running this command would then result in a valid CSV format output,
with the same number of records as both of the input CSV files, where each record havs the same
number of fields (the sum of the number of fields in CSVFILE1 plus those in CSVFILE2).

With the -m option, CSVFILE2 is allowed to have less records than CSVFILE1. Unmatched CSVFILE1

records will be output followed by SEPARATOR only. If the -p option is supplied, empty fields for
the missing CSVFILE2 records will be added.

With the -M option, CSVFILE2 is allowed to have more records than CSVFILE1. The “extra” records
in CSVFILE2 will simply be ignored.

Both CSV file arguments should be valid CSV files, meaning all records in each file should have
an identical number of fields. However, the -a option allows pasting records with variable numbers
of fields from CSVFILE2 onto the records of CSVFILE1, since this is occasionally useful with some
types of data. In such a case, the resulting output will not be a valid standard CSV file due to the
resulting records having variable numbers of fields.

The -v option will cause a report on csv-paste operations to be output (to standard error) at the
end.

41

Sample CSV Files:

• people1.csv:

ID,Last_Name,First_Name,Street,Apt,City,State,Zip

111111111,Smith,John,111 Main St,,Chicago,IL,66601

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

• people2.csv:

ID,Last_Name,First_Name,Sex,Birthdate,Birth City

111111111,Smith,John,M,03/15/1945,Chicago

222222222,Jones,Mary,F,12/01/1990,Memphis

333333333,Carter,Robert,M,05/23/2000,Denver

444444444,Harris,Beth,F,10/30/1987,St. Louis

• people2b.csv:

ID,Last_Name,First_Name,Sex,Birthdate,Birth City

111111111,Smith,John,M,03/15/1945,Chicago

222222222,Jones,Mary,F,12/01/1990,Memphis

333333333,Carter,Robert,M,05/23/2000,Denver

444444444,Harris,Beth,F,10/30/1987,St. Louis

555555555,Biden,Joe,M,01/15/1910,Scranton

666666666,Jones,Jack,M,04/23/2001,Chicago

Examples of Using csv-paste:

• Basic paste of two identically sorted files:

csv-paste people1.csv people2.csv

ID,Last_Name,First_Name,Street,Apt,City,State,Zip,ID,Last_Name,First_Name,Sex,Birthdate,Birth City

111111111,Smith,John,111 Main St,,Chicago,IL,66601,111111111,Smith,John,M,03/15/1945,Chicago

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001,222222222,Jones,Mary,F,12/01/1990,Memphis

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209,333333333,Carter,Robert,M,05/23/2000,Denver

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304,444444444,Harris,Beth,F,10/30/1987,St. Louis

• As above, but then remove duplicate fields:

csv-paste people1.csv people2.csv |csv-cut 1-8,12-

ID,Last_Name,First_Name,Street,Apt,City,State,Zip,Sex,Birthdate,Birth City

111111111,Smith,John,111 Main St,,Chicago,IL,66601,M,03/15/1945,Chicago

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001,F,12/01/1990,Memphis

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209,M,05/23/2000,Denver

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304,F,10/30/1987,St. Louis

• Add a single field key that includes multiple fields, to a CSV file:
(uses Bash process substitution with csv-cut)

csv-paste <(csv-cut -s: 2,3 people1.csv) people1.csv

Last_Name:First_Name,ID,Last_Name,First_Name,Street,Apt,City,State,Zip

Smith:John,111111111,Smith,John,111 Main St,,Chicago,IL,66601

Jones:Mary,222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

Carter:Robert,333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

Harris:Beth,444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

42

• Paste of two identically sorted files, where first has extra records (error!):

csv-paste people2b.csv people1.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,ID,Last_Name,First_Name,Street,Apt,City,State,Zip

111111111,Smith,John,M,03/15/1945,Chicago,111111111,Smith,John,111 Main St,,Chicago,IL,66601

222222222,Jones,Mary,F,12/01/1990,Memphis,222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

333333333,Carter,Robert,M,05/23/2000,Denver,333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,F,10/30/1987,St. Louis,444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

555555555,Biden,Joe,M,01/15/1910,Scranton,

csv-paste: ERROR: mismatch @record #6: CSVFILE1 has more records than CSVFILE2

• Using -m option to eliminate above error and pad missing records:

csv-paste -mp people2b.csv people1.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,ID,Last_Name,First_Name,Street,Apt,City,State,Zip

111111111,Smith,John,M,03/15/1945,Chicago,111111111,Smith,John,111 Main St,,Chicago,IL,66601

222222222,Jones,Mary,F,12/01/1990,Memphis,222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

333333333,Carter,Robert,M,05/23/2000,Denver,333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,F,10/30/1987,St. Louis,444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

555555555,Biden,Joe,M,01/15/1910,Scranton,,,,,,,,

666666666,Jones,Jack,M,04/23/2001,Chicago,,,,,,,,

• Paste of two identically sorted files, where second has extra records (error!):

csv-paste people1.csv people2b.csv

ID,Last_Name,First_Name,Street,Apt,City,State,Zip,ID,Last_Name,First_Name,Sex,Birthdate,Birth City

111111111,Smith,John,111 Main St,,Chicago,IL,66601,111111111,Smith,John,M,03/15/1945,Chicago

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001,222222222,Jones,Mary,F,12/01/1990,Memphis

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209,333333333,Carter,Robert,M,05/23/2000,Denver

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304,444444444,Harris,Beth,F,10/30/1987,St. Louis

./csv-paste: ERROR: mismatch @record #6: CSVFILE1 has less records than CSVFILE2

• Using -M option to eliminate above error:

csv-paste -M people1.csv people2b.csv

ID,Last_Name,First_Name,Street,Apt,City,State,Zip,ID,Last_Name,First_Name,Sex,Birthdate,Birth City

111111111,Smith,John,111 Main St,,Chicago,IL,66601,111111111,Smith,John,M,03/15/1945,Chicago

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001,222222222,Jones,Mary,F,12/01/1990,Memphis

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209,333333333,Carter,Robert,M,05/23/2000,Denver

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304,444444444,Harris,Beth,F,10/30/1987,St. Louis

43

4.16 csv-print

Program to print out a range of records in a CSV file, printing each field on a separate line, making
it easy to read the values for each field.

Usage: csv-print [OPTION...] FIRST_RECORD [CSVFILE]

FIRST_RECORD is 1-based index of first record to print, header being record 1.

FIRST_RECORD may be "L" to print the last record in each file..

Options:

-h -- include header field name from CSVFILE when printing fields (when FIRST_RECORD>1)

-nNUM -- number of records to print (1 by default)

By default, only a single record is printed, but multiple records can be printed with the -n option.
Then, each record’s number is indicated, and records are separated by a blank line.

Field values are surrounded by single quotes (’) to make the entire value clear, even when the field
is empty or contains whitespace, carriage-returns, or linefeeds. (To print select CSV records as
they appear in a file, use csv-records.)

Fields are numbered, but field names (from the header record) can also be prepended by using the
-h option.

44

Examples of Using csv-print:

• View header:

csv-print 1 people1.csv

1: ’ID’

2: ’Last_Name’

3: ’First_Name’

4: ’Street’

5: ’Apt’

6: ’City’

7: ’State’

8: ’Zip’

• View a particular record:

csv-print 4 people1.csv

1: ’333333333’

2: ’Carter’

3: ’Robert’

4: ’333 Mountain Rd’

5: ’’

6: ’Denver’

7: ’CO’

8: ’78209’

• View a particular record with header field names:

csv-print -h 4 people1.csv

1: ID: ’333333333’

2: Last_Name: ’Carter’

3: First_Name: ’Robert’

4: Street: ’333 Mountain Rd’

5: Apt: ’’

6: City: ’Denver’

7: State: ’CO’

8: Zip: ’78209’

• View last record in a file:

csv-print -h L ../csv-test-files/people1.csv

Record #5:

1: ID: ’444444444’

2: Last_Name: ’Harris’

3: First_Name: ’Beth’

4: Street: ’4444 County Rd 34’

5: Apt: ’’

6: City: ’Springfield’

7: State: ’MO’

8: Zip: ’52304’

45

• View multiple records:

csv-print -hn2 4 people1.csv

Record #4:

1: ID: ’333333333’

2: Last_Name: ’Carter’

3: First_Name: ’Robert’

4: Street: ’333 Mountain Rd’

5: Apt: ’’

6: City: ’Denver’

7: State: ’CO’

8: Zip: ’78209’

Record #5:

1: ID: ’444444444’

2: Last_Name: ’Harris’

3: First_Name: ’Beth’

4: Street: ’4444 County Rd 34’

5: Apt: ’’

6: City: ’Springfield’

7: State: ’MO’

8: Zip: ’52304’

• View headers in multiple files:

csv-print 1 people?.csv

==> people1.csv <==

1: ’ID’

2: ’Last_Name’

3: ’First_Name’

4: ’Street’

5: ’Apt’

6: ’City’

7: ’State’

8: ’Zip’

==> people2.csv <==

1: ’ID’

2: ’Last_Name’

3: ’First_Name’

4: ’Sex’

5: ’Birthdate’

6: ’Birth City’

46

• Viewing records in file with non-uniform numbers of fields:

csv-print -hn3 2 nonuniform.csv

Record #2: <<correct number of fields (matches header)

1: Field1: ’A 1 A’

2: Field2: ’A 2 A’

3: Field3: ’A 3 A’

4: Field4: ’A 4 A’

5: Field5: ’A 5 A’

Record #3: <<has one more field than header

1: Field1: ’B 1 B’

2: Field2: ’B 2 B’

3: Field3: ’B 3 B’

4: Field4: ’B 4 B’

5: Field5: ’B 5 B’

6: [EXTRA]: ’B 6 B’

Record #4: <<has one less field than header

1: Field1: ’C 1 C’

2: Field2: ’C 2 C’

3: Field3: ’C 3 C’

4: Field4: ’C 4 C’

5: Field5: [MISSING]

47

4.17 csv-process-field

Program to process/manipulate values in a single field of the records in a CSV file, using provided
AWK program code. The AWK program can modify the value of the field in select records, producing
modified records that will be output in place of the originals. AWK program code can be supplied
as a command-line argument if short and not reused frequently, or it can be supplied in AWK
source code file(s) if longer or to be reused.

Usage: csv-process-field [OPTIONS] FIELD [CSVFILE]

FIELD is the 1-based field index to process, or header field name if -Q option.

AWK program code must be supplied via the -e or -f option.

Options:

-b -- blank records passed through (removed by default, see also -1)

-eCODE -- CODE is the AWK program to execute

-fCODE_FILE -- CODE_FILE is a file containing the AWK program to execute

-h -- process header record (passed through by default)

-lLIB_FILE -- load AWK library/functions file LIB_FILE

-o -- omit header record (not processed, not passed through)

-Q -- query header to get index of FIELD name

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-1 -- interpret blank record as having a single empty field (see also -b)

The AWK code will receive FIELD’s value in each CSVFILE record as its input "record" ($0).

E.g., CSVFILE record "A,B,C" with FIELD of 2, will result in AWK code having $0 be "B".

Modify FIELD’s value by having the code do an assignment to $0: $0=newvalue.

Note that $0 must have a string value, so use sprintf() to assign new numeric values.

FIELD values in output records will be the values of $0 produced for each CSVFILE record.

AWK code is not to do any output (do not call print or printf).

AWK code must be valid AWK "program," i.e., one or more rules: [pattern]{actions}.

The input CSV file is required to have FIELD in every record, and will terminate with an error if
it is missing. This means that blank records are not allowed in CSV files input to this program.
(Remove with csv-clean before using this program.)

Note that the AWK code must be a valid AWK program. I.e., it is to consist of one or more AWK
rules, of the form: [pattern]{actions}. Invalid AWK programs will result in AWK errors or
unwanted behavior.

Each CSV record’s FIELD value is input to the AWK code as a single AWK input “record” ($0).
E.g., with FIELD of 2 and CSV record “A,B,C”, the AWK code will have $0 be “B”. Changes to
FIELD are to be made with assignments to $0: {...$0=newvalue}. The value of FIELD in each
output CSV record will be the value of $0 upon completion of the AWK code processing of each
AWK input record (i.e., FIELD in each original CSVFILE record).

AWK code should modify only $0, and it should do this only in case FIELD’s value is to be changed
in a CSV record. See the below AWK Coding Requirements and Modifying FIELD with AWK
subsections for more details about the requirements and functioning of AWK code for use with

48

this program. Read the AWK Code section of this manual for more information on AWK. Pay
particular attention to the issues discussed in the subsection Assignments to $0.

Utilizes system-installed AWK, which is assumed to be GNU AWK, run in a subprocess. Invalid
AWK code passed to csv-process-field will cause error messages from the AWK subprocess,
and termination. Fix the coding errors and rerun.

49

Examples of Using csv-process-field:

• Process field with mix of (positive) integers and reals, converting reals to integers by rounding:

csv-process-field -e ’/^[0-9]+\.[0-9]+$/{$0=sprintf("%d",int($0+0.5))}’

3 data.csv > data-rounded.csv

• Convert 2-digit years to 4-digit years, taking into account correct century:
(See Date-Time Format Strings for further information.)

csv-process-field -f fixyear.awk 2 2digityrs.csv > 4digityrs.csv

fixyear.awk:

Dates of form: month/dayofmonth/year[time]

/^[0-9]+\/[0-9]+\/[0-9]{2}(([^0-9].*)|())$/ {

pos = index($0," ")

if (pos != 0)

date = substr($0,1,pos-1)

else

date = $0

split(date,parts,"/")

yr = parts[3]

if (yr >= 30)

#1930 to 1999

yr += 1900

else

#2000 to 2029

yr += 2000

if (pos != 0)

$0 = sprintf("%s/%s/%4d%s",parts[1],parts[2],yr,substr($0,pos))

else

$0 = sprintf("%s/%s/%4d",parts[1],parts[2],yr)

}

• Unquote quoted fields that can be unquoted:
(I.e., unquote fields without embedded commas or dquotes.)

csv-process-field -f unquote.awk 2 file.csv > file-unquoted.csv

unquote.awk:

/^"[^,"]*"$/ {

noquotes = substr($0,2,length($0)-2)

gsub(/""/,"\"",noquotes)

$0 = noquotes

}

50

• Unquote using a function from an AWK library file (file with function definitions):

csv-process-field -l csv-functions.awk -e ’{$0=unquote_field($0)}’

2 file.csv > file-unquoted.csv

• Change age (integer years) into age category (string):

csv-process-field -f agecat.awk 5 people.csv > people.agecat.csv

agecat.awk:

/^[0-9]+$/ {

if ($0 <= 18) $0 = "0-18"

else if ($0 <= 39) $0 = "19-39"

else if ($0 <= 59) $0 = "40-59"

else $0 = "60+"

}

Handle blank fields:

/^ *$/ {

$0 = "unknown"

}

51

AWK Coding Requirements for csv-process-field:

• Code must be a valid AWK program.

• Does not modify RS or ORS.

• Does not call print or printf.

• Does not call next or nextfile.

Modifying FIELD with AWK code:

The new value for FIELD in each CSV record will be the value of $0 after the AWK code runs on
the CSV record. FIELD’s value will be unchanged in a CSV record if $0 is unchanged by the AWK
code. The main way to change the value of FIELD in CSV records is by having the AWK code
assign a new value to $0: e.g. $0=newvalue. One tricky aspect of this is that assignments to $0

must be done with string values! Make sure to read the AWK subsection Assignments to $0 for
more information on this issue.

csv-process-field vs. csv-process-records:

csv-process-field is designed to evaluate and modify only a single field in CSV records. By
contrast, csv-process-records is designed to evaluate and modify multiple fields in CSV records.
Here are some example tasks that csv-process-records can do that csv-process-field cannot:

• Modify one field’s value based on the value of one or more other field(s).

• Create a new field that is a combination of multiple fields.

csv-process-field vs. csv-replace-field:

The use of AWK code with csv-process-field allows numeric, string, and other general types of
manipulation of field values. By contrast, csv-replace-field allows only simple textual manipulation
(search for pattern and replace). Here are some examples of differences in functionality between
the two utilities:

• Field values that may be quoted: csv-process-field could properly unquote (including
unescaping embedded "’s), while csv-replace-field could only remove surrounding double
quotes, but not unescape embedded dquotes.

• Field values that are ages: csv-process-field could do something like converting an age
into an age category (e.g., 56 → 40-59), csv-replace-field could not do this.

• Field values that are real numbers: csv-process-field could round the reals to integers,
csv-replace-field could only drop the fractional component.

52

4.18 csv-process-records

Program to process/manipulate the records of a CSV file, using provided AWK code. The AWK
code can modify fields in records, producing modified records that will be output in place of the
originals.

Usage: csv-process-records [OPTIONS] [CSVFILE]

AWK program code must be supplied via the -e or -f option.

Options:

-aNEWFIELDS -- append NEWFIELDS list to output header (use when adding fields)

-b -- blank records processed (removed by default)

-eCODE -- CODE is the AWK program to execute

-fCODE_FILE -- CODE_FILE is a file containing the AWK program to execute

-h -- process header record (passed through by default)

-lLIB_FILE -- load AWK library/functions file LIB_FILE

-o -- omit header record (not processed, not passed through)

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

The AWK code will receive each successive CSVFILE record as an input "record" ($0).

I.e., each CSVFILE record will be available as $0, with its fields as $1, $2, etc.

Modify a record’s field by having the code do an assignment to the field: $2=newvalue.

Output records will be the values of $0 produced for each CSVFILE record.

AWK code is not to do any output (do not call print or printf).

AWK code must be valid AWK "program," i.e., one or more rules: [pattern]{actions}.

AWK code can be supplied as a command-line argument if short and not reused frequently, or it
can be supplied in AWK source code file(s) if longer or to be reused.

Note that the AWK code must be a valid AWK program. I.e., it is to consist of one or more AWK
rules, of the form: [pattern]{actions}. Invalid AWK programs will result in AWK errors or
unwanted behavior.

Each CSV record is input to the AWK code as a single AWK input “record:” $0 will be the
entire CSV record, $1, $2, etc., will be the CSV record’s fields. Changes are to be made through
asssignments to AWK field components: e.g., {...$2=newvalue}. The output CSV records will
be the values of $0 upon completion of the AWK code processing of each AWK input record (i.e.,
each original CSVFILE record).

See the below AWK Coding Requirements and Modifying Records with AWK subsections for more
details about the requirements and functioning of AWK code for use with this program.

Utilizes system-installed AWK, which is assumed to be GNU AWK, run in a subprocess. Invalid
AWK code passed to csv-process-records will cause error messages from the AWK subprocess,
and termination. Fix the coding errors and rerun.

53

Examples of Using csv-process-records:

• Change value of one field based on value in another field:

csv-process-records -e ’$1=="Jones"&&$2=="Anne"{$2="Annie"}’

file.csv > file-new.csv

• Exchange fields 1 and 2 (just an example, easier to use csv-cut):

csv-process-records -e ’{temp=$1;$1=$2;$3=temp}’ file.csv > file-new.csv

• Add a new field that is the sum of fields 1 and 3:

csv-process-records -a "Sum" -e ’{$(NF+1)=$1+$3}’ file.csv > file-new.csv

(Note use of -a option and NF variable to number new field.)

• Previous example without using -a option, using code in file faddnr.awk:

csv-process-records -h -f faddnr.awk file.csv > file-plus.csv

faddnr.awk:

NR==1 {$(NF+1) = "Sum"}

NR>1 {$(NF+1) = $1 + $3}

(Note use of -h option, and NR variable to select header vs. non-header processing.)

54

AWK Coding Requirements for csv-process-record:

• Code must be a valid AWK program.

• Does not modify RS, FS, ORS, OFS, FPAT.

• Does not call print or printf.

• Does not call next or nextfile.

Modifying Records with AWK code:

Each CSV record will be available in the AWK code as $0, with fields available as $1, $2, etc.
Processing code can modify field values by assigning new values to them: e.g., {...$2=newvalue}.
The possibly modified record from AWK processing will become the updated CSV record.

If CSV output is desired, $0 should generally not be modified directly (e.g, don’t do: {...$0=...}).
However, this program can be used to do things like producing “data” files from the records in a
CSV file. For example, if one wants a data file containing the averages of numeric fields 2, 3, and
5, this could be accomplished with AWK code like: {$0=sprintf("%.2f",($2+$3+$5)/3.0)}.

Make sure to read the AWK subsection Assignments to $0 if writing code where $0 is to be
modified!

New fields can even be added by asssigning to fields greater than NF: e.g., {...$(NF+1)=newfieldvalue}.
Of course, if field(s) are to be added to records, new header field(s) should also be added. This will
require using the -h option (see below) and an AWK rule for handling just the header (pattern:
NR==1) and one or more other rules that will not affect the header (pattern: NR>1).

If the -h option is used, the header will be passed to AWK. In this case, the header will have NR

of 1, while the first non-header record will have NR of 2. Without the -h option, the header record
from the CSV file is passed through by default, meaning it is not counted by AWK, so NR will be
1 (one) for the first non-header record.

If NF has its value made smaller (NF=NF-2), this will cause field(s) to be removed from the (ends of
the) CSV records. Of course, if field(s) are to be removed from records, header field(s) should also
be adjusted (so use the -h option and multiple rules, as discussed above).

See the AWK Code section for more information about AWK coding.

csv-process-records vs. csv-process-field:

csv-process-records is designed to evaluate and modify multiple fields in CSV records. By
contrast, csv-process-field is designed to evaluate and modify only a single field in CSV records.
Here are some example tasks that csv-process-records can do that csv-process-field cannot:

• Modify one field’s value based on the value of one or more other field(s).

• Create a new field that is a combination of multiple fields.

55

4.19 csv-records

Program to print out a range of records in a list of CSV files. Records are output exactly as in
argument CSV file, with the exception of possibly changing the record terminator characters (and
removing blank records).

Usage: csv-records [OPTION...] FIRST_RECORD [CSVFILE...]

FIRST_RECORD is 1-based index of first record to print, header being record 1.

FIRST_RECORD may be "L" to print the last record in the file.

Options:

-b -- blank records passed through (removed by default)

-h -- print header even if FIRST_RECORD is not 1 (i.e., add header to output)

-nNUM -- number of records to print (rest of file by default)

(does not count header if -h option)

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-v -- verbose: prefix records with linenums, and filenames if multiple CSVFILEs

-z -- zero (null char) terminate output records (for use with sort, uniq, etc.)

This program is primarily intended to extract ranges of records in CSV files, to e.g., start a
processing pipeline working on a subsequence of CSV records. By default, the program prints
the remaining records in each file argument starting from specified first record. The -n option
allows limiting the number of records printed out (starting with the first record).

It accepts multiple CSV file arguments to allow for comparison of particular record(s) from multiple
files, with the -v option useful for visual comparisons. If one desires to print out all the records
from multiple CSV files, concat’ing the files into a valid CSV file, csv-cat should be used instead.

By default, header record(s) are not printed if FIRST_RECORD is not 1, but this behavior can be
changed with the -h option.

By default, blank records are removed (and not counted against NUM). The -b option can be used
to allow blank records to be passed through if desired (i.e., treated as valid records). Note that if
the “header” record is blank, the -h option will use it as the header even without the -b option.
Similarly, if FIRST_RECORD is L, to print the last record in the file, the last record will be printed
even if it is blank.

The -z option allows csv-records to be used to read/parse CSV files that contain embedded
linefeeds (\n’s in quoted fields), and feed the resulting records to a program that cannot read such
CSV files (because the embedded linefeeds will be interpreted as record/line terminators). A number
of GNU Linux/UNIX utilities have an option that will interpret “lines” as being terminated by null
chars (\0’s) instead of linefeeds. See Integration with Standard Utilities for further information.

56

Examples of Using csv-records:

• Print out entire file (with LF only terminators):

csv-records 1 people1.csv

ID,Last_Name,First_Name,Street,Apt,City,State,Zip

111111111,Smith,John,111 Main St,,Chicago,IL,66601

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

• Print out entire file without header:

csv-records 2 people1.csv

111111111,Smith,John,111 Main St,,Chicago,IL,66601

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

• Print file starting at record 4 (non-header record #3):

csv-records 4 people1.csv

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

• Print file starting at record 4, with header:

csv-records -h 4 people1.csv

ID,Last_Name,First_Name,Street,Apt,City,State,Zip

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

• Print just record 4 (non-header record #3):

csv-records -n1 4 people1.csv

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

• Print just record 4, with header:

csv-records -hn1 4 people1.csv

ID,Last_Name,First_Name,Street,Apt,City,State,Zip

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

• Print last record in file, with record number prefix:

csv-records -v L people1.csv

5:444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

57

• Print header records from multiple files to compare:

csv-records -vn1 1 people?.csv

people1.csv:1:ID,Last_Name,First_Name,Street,Apt,City,State,Zip

people2.csv:1:ID,Last_Name,First_Name,Sex,Birthdate,Birth City

people3.csv:1:ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs

• Print records from multiple files to compare:

csv-records -vn2 2 people1*.csv

people1a.csv:2:111111111,Smith,John,111 Main St,,Chicago,IL,66601

people1a.csv:3:444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

people1.csv:2:111111111,Smith,John,111 Main St,,Chicago,IL,66601

people1.csv:3:222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

• Select a subsequence of records to feed into pipeline:

csv-records -hn20 11 personnel.csv | csv-sort 1 > subpersonnel.csv

58

4.20 csv-reformat-date-time

Program to reformat date-time (i.e., timestamp) values in one field of a CSV file.

Usage: csv-reformat-date-time [OPTION...] FIELD FORMAT_OLD FORMAT_NEW [CSVFILE]

FIELD is the 1-based index of the date-time field to reformat,

or header field name if -Q option.

FORMAT_OLD is the date-time format for existing values.

FORMAT_NEW is the date-time format for replacement values.

Options:

-b -- blank records passed through (removed by default)

-c -- take ceiling of seconds (altering minutes) to remove/zero-out seconds

-e -- empty FIELD values cause an error (allowed by default)

-h -- header record is to be processed (passed through by default)

-Q -- query header to get index of FIELD name

-r -- round seconds (altering minutes) to remove/zero-out seconds

-t -- terminate output records with CR+LF (\r\n) (LF only by default

Date-time FORMAT’s must be consistent with strftime(3)/strptime(3):

e.g., "%D %R" or "%m/%d/%y %H:%M" for "1/5/21 1:23" or "01/05/21 01:23";

e.g., "%m/%d/%Y %T" or "%m/%d/%Y %H:%M:%S" for "1/5/2021 1:23:45" or "01/05/2021 01:23:45";

Use "man strftime" or "man strptime" for further info.

Requires three items be specified:

1. field to be reformatted;

2. format string for current date-time values;

3. format string for new, reformatted date-time values;

The date-time format strings define the syntax and meaning of date-time fields. See the section
Date-Time Format Strings for more information. One format string tells how to parse/interpret
current values, the other specifies the revised format for the values.

All the date-time values in FIELD must use identical syntax, as it can be impossible to unambigu-
ously interpret a date-time string with unknown format (e.g., 2/10/21 could be February 10 2021,
or October 2 2021). Date-time values that cannot be parsed with FORMAT_OLD will result in an
error.

Records where FIELD is empty (empty string) are passed through unchanged by default. Such fields
can be made to cause an error with the -e option. Records that lack FIELD altogether are also
passed through unchanged. See csv-clean and csv-validate to adjust non-standard CSV files.

If seconds appear in the existing FIELD values but will be dropped by FORMAT_NEW, it may be
desirable to apply the ceiling or round function to update minutes to be a better reflection of the
time. This can be done with the -c or -r options.

If date-time components not in an existing FIELD value appear in FORMAT_NEW, default values will
be used. Default values represent a Linux/UNIX “calendar time” of 0 (zero), what is known as the
start of the UNIX Epoch: Jan 1, 1970 at midnight. So default times will be: 00:00:00, default
dates will be: January 1, 1970.

59

Timezone information is not required for this program, since it is simply reformatting a date-time,
not comparing times or computing time differences.

60

Sample CSV Files:

• dates.csv:

Join,Age,Name,Arrive

2019-12-01,34,Bob,1/1/21 00:00:00

2020-01-23,23,Anne,3/17/20 01:34:24

2018-03-04,6,Judy,10/03/19 6:01:49

Examples of Using csv-reformat-date-time:

• Reformat date+time field to ISO format:

csv-reformat-date-time 4 ’%D %T’ ’%F %T’ dates.csv

Date,Number,Name,Arrive

12/01/19,34,Bob,2021-01-01 00:00:00

01/23/20,23,Anne,2020-03-17 01:34:24

03/04/18,6,Judy,2019-10-03 06:01:49

• Reformat date+time field to ISO format, drop seconds:

csv-reformat-date-time 4 ’%D %T’ ’%F %R’ dates.csv

Date,Number,Name,Arrive

12/01/19,34,Bob,2021-01-01 00

01/23/20,23,Anne,2020-03-17 01:34

03/04/18,6,Judy,2019-10-03 06:01

• Reformat date+time field to ISO format, drop seconds using ceiling of seconds:

csv-reformat-date-time -c 4 ’%D %T’ ’%F %R’ dates.csv

Date,Number,Name,Arrive

12/01/19,34,Bob,2021-01-01 00:00

01/23/20,23,Anne,2020-03-17 01:35

03/04/18,6,Judy,2019-10-03 06:02

• Reformat both “date-time” fields identically:

csv-reformat-date-time 1 ’%D’ ’%F %T’ dates.csv |

csv-reformat-date-time 4 ’%D %T’ ’%F %T’

Date,Number,Name,Arrive

2019-12-01 00:00:00,34,Bob,2021-01-01 00:00:00

2020-01-23 00:00:00,23,Anne,2020-03-17 01:34:24

2018-03-04 00:00:00,6,Judy,2019-10-03 06:01:49

61

4.21 csv-remove-duplicate-keys

Program to remove records with duplicate keys in a CSV file. This situation can occur when records
for the same item/object/person are updated by adding addition records to a CSV file rather than
editing existing records.

Usage: csv-remove-duplicate-keys [OPTION...] KEYFIELD [CSVFILE]

KEYFIELD is the 1-based field index for record keys to remove duplicates of,

or header field name if -Q option.

Options:

-f -- first record of sequence should be left when there are key duplicates

(default is to leave last record of sequence with duplicate keys)

-h -- process header (passed through by default)

-Q -- query header to get index of FIELD name

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

Note: Duplicate key records must be sequential (grouped), so sorting

on KEYFIELD may be required before running this program (stable sort).

The latest record will generally be the first instance or last instance for the item/object/person.
This program can remove duplicates for both cases. Removing duplicates can be necessary when
trying to merge CSV files (as with csv-join or csv-paste).

To use this function, there must be a field in the CSV file with a “key” that identifies each
item/object/person considered as the same.

In addition, duplicate key records must occur sequentially (i.e., grouped) in the CSV file, so sorting
on the key field may be required before running this program. Such a sort must be stable, to
preserve most recent ordering of original CSV file.

62

Sample CSV Files:

• people.csv:

ID,Last_Name,First_Name,Street,Apt,City,State,Zip

111111111,Smith,John,111 Main St,,Chicago,IL,66601

111111111,Smith,John,1300 W. Lake Shore Dr,,Chicago,IL,66601

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Beth,4444 County Rd 34,,Springfield,MO,52304

444444444,Harris,Bethany,4444 County Rd 34,,Springfield,MO,52304

Examples of Using csv-remove-duplicate-keys:

• Basic call:

csv-remove-duplicate-keys 1 people.csv

ID,Last_Name,First_Name,Street,Apt,City,State,Zip

111111111,Smith,John,1300 W. Lake Shore Dr,,Chicago,IL,66601

222222222,Jones,Mary,22 W. Lake Ave,3A,Carbondale,IL,62001

333333333,Carter,Robert,333 Mountain Rd,,Denver,CO,78209

444444444,Harris,Bethany,4444 County Rd 34,,Springfield,MO,52304

63

4.22 csv-replace-field

Program to replace/substitute values in a single field of the records in a CSV file. Basically, “find
and replace” functionality for a particular field of a CSV file.

Usage: csv-replace-field [OPTION...] FIELD PATTERN REPLACEMENT [CSVFILE]

FIELD is the 1-based field index to replace, or header field name if -Q option.

PATTERN is the regex or string pattern to match for replacement.

(PATTERN assumes extended regex syntax, so do not escape regex metachars).

REPLACEMENT specifies the value to replace matched field values with.

Options:

-b -- blank records passed through (removed by default, see also -1)

-F -- interpret PATTERN as a fixed string

-h -- header record is to be processed (passed through by default)

-i -- ignore case when matching PATTERN

-m -- support multiple regex subexpression matches in REPLACEMENT

-o -- omit header record (not processed, not passed through)

-Q -- query header to get index of FIELD name

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-x -- PATTERN must exactly match the whole field

-1 -- interpret blank record as having a single empty field (see also -b)

REPLACEMENT can contain ’&’ to be substituted by matched field substring:

with regex matching ’&’ replaced by substring matched,

with fixed string matching ’&’ replaced by entire original field,

-m option requires use of ’&0’ to match entire regex, and

allows ’&1’, etc., to match 1st, etc. parenthesize subexpressions.

Requires three items be specified:

1. field to examine and possibly modify;

2. pattern of field value that should be modified;

3. replacement field value (which may include matched value(s) within it);

Can handle regex and fixed string patterns to denote fields to be replaced (fixed string only when
patterns come from a file).

The input CSV file is required to have FIELD in every record, and will terminate with error if
missing. Blank records are removed by default, but see the -b and -1 options.

64

Examples of Using csv-replace-field:

• Upcase word “test” if that is field’s value:

csv-replace-field -x ’test’ ’TEST’ file.csv

• Upcase word “test” if it occurs in field’s value:
(note parens required in regex pattern, to delimit pattern components)

csv-replace-field -im 2 ’(.*)test(.*)’ ’&1TEST&2’ file.csv

• Add double quotes around unquoted fields:
(unquoted fields cannot contain embedded special characters, so a valid CSV file
will not need further processing to create valid quoted fields)

csv-replace-field -x 2 ’[^"]*’ ’"&"’ file.csv

• Remove any surrounding double quotes from field:
(but note that if there are any embedded special characters, this command will produce an
invalid CSV file—must use csv-process-field instead)

csv-replace-field -m 3 ’(")(.*)(")’ ’&2’ file.csv

• Convert (positive) real number to integer by dropping fractional part after decimal point
(i.e., like floor function):

csv-replace-field -mx 5 ’([0-9]+)(\.[0-9]*)’ ’&1’ file.csv

• Add a new field with main category code only, where codes are like Q35.9, and want new
field with just Q35:

csv-paste file.csv\

<(echo "Main_Code";\

csv-cat -n file.csv |\

csv-cut 7 |\

csv-replace-field -mh 1 ’([^.]+)(\..+)?’ ’&1’)\

> file-plus.csv

(uses Bash process substitution with a pipeline to create desired new field,
and csv-paste to add it to original file)

65

4.23 csv-sort

Program to sort a CSV file, based on values in a single field. csv-sort-mult is similar but can sort
on multiple keys from multiple fields.

Usage: csv-sort [OPTIONS] SORT_FIELD [CSVFILE]

SORT_FIELD is the 1-based field index to sort on, or header field name if -Q option.

Options:

-d -- SORT_FIELD is a date-time, use -D if need to supply date-time FORMAT string

-DFORMAT -- SORT_FIELD is a date-time, FORMAT the date-time format string

-e -- empty SORT_FIELD is an error (allowed by default)

-h -- sort header record (passed through by default)

-n -- numeric sort

-o -- omit header record (not sorted, not passed through)

-Q -- query header to get index of FIELD name

-r -- reverse sort

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-u -- unquote quoted SORT_FIELD values to obtain sort keys

(remove surrounding "’s and unescape embedded "’s);

date-time keys are always automatically unquoted

-zTIMEZONE -- timezone for use with date-time sorts, e.g. "America/Chicago"

-1 -- interpret blank record as having a single empty field

Date-time FORMAT must be consistent with strptime(3):

e.g., "%m/%d/%Y %T" (the default) for "1/5/2021 1:23:45" or "01/05/2021 01:23:45";

e.g., "%D %R" for "1/5/21 1:23" or "01/05/21 01:23";

Use "man strptime" for further info.

TIMEZONE required only if -d/-D option used and date-times require DST.

The CSV file argument is required to have SORT_FIELD in every record. It will terminate with an
error if the field is missing in any record. This means that blank records are not allowed in CSV
files input to this program. (Remove with csv-clean before using this program.)

SORT_FIELD is allowed to be empty in records by default, but this can be made to cause an error
with the -e option. Records with empty SORT_FIELD values will be sorted to the beginning of the
output (or the end with the -r option). This will be the case even if SORT_FIELD is indicated to
be a date-time or number.

The program utilizes the standard Linux/UNIX utility program sort, which is run in a subprocess.
Several options are thus similar to those of sort.

Date-time key values are interpreted using the Linux/UNIX function strptime(3). A format string
describing the syntax and meaning of date-time fields is required. The default format is given below
in the usage message. If this is not appropriate, a custom format string can be supplied using the
-D option. See the section Date-Time Format Strings for detailed information. Date-time values
that cannot be parsed with a given format string will result in an error.

All date-time values in FIELDmust use identical syntax, since it can be impossible to unambiguously
interpret an unknown date-time string (e.g., 2/10/21 could be February 10 2021, or October 2

66

2021). Any reasonable CSV file will use a consistent format for date-time values within a single
field. Date-time fields can be reformatted with the CSV Utils program csv-reformat-date-time.

67

Sample CSV Files:

• people.csv:

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

Examples of Using csv-sort:

• Sort on text field (note sort is stable):

csv-sort 2 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

• Sort on numeric field:

csv-sort -n 7 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

• Incorrect text sort on numeric field:

csv-sort 7 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

68

• Sort on date-time field:

csv-sort -d 8 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

• Sort on date-time field, but default FORMAT inconsistent:

csv-sort -d 5 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

Error: record #2: SORT_FIELD was an invalid date-time: ’10/30/1987’

• Sort on date-time field, supplying FORMAT:

csv-sort -D’%m/%d/%Y’ 5 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

69

4.24 csv-sort-mult

Program to sort a CSV file, based on values in a multiple fields. More flexible than csv-sort since
it can handle multiple keys.

Usage: csv-sort-mult [OPTIONS] -kKEYDEF... [CSVFILE]

KEYDEF defines a sort key: FIELD[n|d][r]

FIELD is the 1-based index of the key field;

optionally followed by ’n’ or ’d’ to indicate numeric or date-time sorting for the key;

optionally completed with ’r’ to indicate reverse sort;

Examples: -k1, -k2r, -k3n, -k4nr, -k5d, -k5dr.

Options:

-DFORMAT -- use FORMAT as the date-time format string for any date-time sort keys

-e -- empty SORT_FIELD is an error (allowed by default)

-h -- sort header record (passed through by default)

-o -- omit header record (not sorted, not passed through)

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-u -- unquote quoted sort FIELD values to obtain sort keys

(remove surrounding \"’s and unescape embedded \"’s);

date-time keys are always automatically unquoted

-zTIMEZONE -- timezone for use with date sorts, e.g. ’America/Chicago’

-1 -- interpret blank record as having a single empty field

Date-time FORMAT must be consistent with strptime(3):

e.g., "%m/%d/%Y %T" (the default) for "1/5/2021 1:23:45" or "01/05/2021 01:23:45";

e.g., "%D %R" for "1/5/21 1:23" or "01/05/21 01:23";

Use "man strptime" for further info.

TIMEZONE required only if date-time sort keys require DST.

While this CSV sort program is more flexible than csv-sort, it will be slightly slower and more
cumbersome to use when sorting on only a single key. Thus, it is recommended to use csv-sort for
single key sorting.

Syntax is similar to Linux/UNIX sort utility, in that each key is specified separately (with -k

option), and key definition order is the order keys are applied in for sorting.

The CSV file argument is required to have all specified key fields in every record. It will terminate
with an error if a key field is missing in any record. This means that blank records are not allowed
in CSV files input to this program. (Remove with csv-clean before using this program.)

Key fields are allowed to be empty by default, but this can be made to cause an error with the -e
option. Records with empty key field values will be sorted to the beginning of the output sequence
based on the key’s order (or the end with the -r option).

The program utilizes the standard Linux/UNIX utility program sort, which is run in a subprocess.
Several options are similar to those of sort, since sort is doing the sorting ultimately.

Date-time key values are interpreted using the Linux/UNIX function strptime(3). A format string
describing the syntax and meaning of date-time fields is required. The default format is given below

70

in the usage message. If this is not appropriate, a custom format string can be supplied using the
-D option. See the section Date-Time Format Strings for detailed information. Date-time values
that cannot be parsed with a given format string will result in an error.

All date-time values in sort key FIELD’s must use identical syntax, since only a single format string
can be specified and since it can be impossible to unambiguously interpret an unknown date-time
string (e.g., 2/10/21 could be February 10 2021, or October 2 2021). Most reasonable CSV files will
use an identical format for any date-time values, but if fields originated from difference systems,
one might encounter a CSV file where different date-time fields use different formats. Date-time
fields in such a file could be made consistent by being reformatted with the CSV Utils program
csv-reformat-date-time.

71

Sample CSV Files:

• people.csv:

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

Examples of Using csv-sort-mult:

• Sort on text field (note sort is stable):

csv-sort-mult -k2 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

• Sort on two text fields:

csv-sort-mult -k2 -k3 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

• Sort on numeric field:

csv-sort-mult -k7n people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

72

• Incorrectly sort on numeric field without n modifier:

csv-sort-mult -k7 people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

• Sort on date-time field:

csv-sort-mult -k8d people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

• Sort on date-time field, but default FORMAT inconsistent:

csv-sort-mult -k5d people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

Error: record #2: KEYDEF field 5 was an invalid date-time: ’10/30/1987’

• Sort on date-time field, supplying FORMAT:

csv-sort-mult -k5d -D’%d/%m/%Y’ people.csv

ID,Last_Name,First_Name,Sex,Birthdate,Birth City,Weight_Lbs,Recorded

111111111,Smith,John,M,03/15/1945,Chicago,187,01/15/1985 15:32

555555555,Smith,Susan,F,06/3/1955,New York,119,04/06/1999 16:05

444444444,Harris,Beth,F,10/30/1987,St. Louis,121,12/13/1987 11:23

222222222,Jones,Mary,F,12/01/1990,Memphis,98,10/24/1991 11:06

333333333,Carter,Robert,M,05/23/2000,Denver,205,02/03/2001 14:02

666666666,Smith,Anne,F,2/08/2011,Syracuse,68,02/10/2011 15:11

73

4.25 csv-validate

Program to validate that a CSV file is properly formatted according to RFC 4180, plus provide
additional info about the file’s “style” characteristics as a CSV. See examples below for info that
is provided.

Usage: csv-validate [CSVFILE]

Options:

-v -- verbose: print messages about each issue encountered

Verbose syntax/style messages and CSV characteristics report are output to standard output.
Error/warning messages are to standard error.

74

Example Output from csv-validate:

• CSV file with quoted fields and embeds:

Report for ’embeds.csv’:

--

Basics:

Records in total: 5

Fields in header record: 5

Syntax:

Records with field count mismatches: 0

short: 0

extra: 0

Blank records: 0

Style:

Fields with embedded carriage-returns: 2

Embedded carriage-returns: 3

Fields with embedded linefeeds: 2

Embedded linefeeds: 3

Quoted fields: 25

Cleanable quoted fields: 21

Unquoted empty fields: 0

Unquoted whitespace fields: 1

Unquoted leading/trailing whitespace fields: 4

• CSV file with non-uniform field counts:

Report for ’notuniform.csv’:

--

Basics:

Records in total: 7

Fields in header record: 5

Syntax:

Records with field count mismatches: 4

short: 2

extra: 2

Blank records: 0

Style:

Fields with embedded carriage-returns: 0

Embedded carriage-returns: 0

Fields with embedded linefeeds: 0

Embedded linefeeds: 0

Quoted fields: 0

Cleanable quoted fields: 0

Unquoted empty fields: 0

Unquoted whitespace fields: 1

Unquoted leading/trailing whitespace fields: 4

75

4.26 csv-to-dsv

Program to convert a CSV file to a DSV (delimiter-separated values) file that uses a non-comma
delimiter char. Changes delimiter from comma (,) to specified delimiter char.

Usage: csv-to-dsv [OPTION...] DSV_DELIMITER_CHAR [CSVFILE]

(DSV_DELIMITER_CHAR can use C-style escape-sequence if quoted: e.g., "\t")

Options:

-b -- blank records passed through (removed by default)

-r -- replace embedded CR (\r) and LF (\n) characters with text

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-u -- unquote quoted fields that can be unquoted with delimiter change

Automatically quotes fields if necessary, using dquotes (’’’s) and escaping embedded dquotes.

Output is a DSV file that should be valid if quoting with dquotes is allowed (different DSV standards
may handle field “quoting” differently).

76

Examples of Using csv-to-dsv:

• “Tabify” CSV file (C-style tab):

csv-to-dsv "\t" example.csv > example.tsv

• “Tabify” CSV file (Bash tab):

csv-to-dsv $’\t’ example.csv > example.tsv

• Replace commas, so may allow unquoting of fields with embedded commas:

csv-to-dsv -u ":" example.csv > example.dsv

77

4.27 dsv-to-csv

Program to convert DSV (delimiter-separated values) file that uses a non-comma delimiter char,
to a valid CSV file. Changes delimiter from specified delimiter to comma (,).

Usage: dsv-to-csv [OPTION...] DSV_DELIMITER_CHAR [DSVFILE]

(DSV_DELIMITER_CHAR can use C-style escape-sequence if quoted: e.g., "\t")

Options:

-b -- blank records passed through (removed by default)

-r -- replace embedded CR (\r) and LF (\n) characters with text

-t -- terminate output records with CR+LF (\r\n) (LF only by default)

-u -- unquote quoted fields that can be unquoted with delimiter change

Automatically quotes fields if necessary (consistent with CSV standard).

Output will be a valid CSV file if DSV file uses dquotes (’’’s) for quoting. Different DSV standards
may handle field “quoting” differently, and if that is the case, then the result is not guaranteed to
be valid CSV syntax.

78

Examples of Using dsv-to-csv:

• Convert TSV to CSV file (C-style tab):

dsv-to-csv "\t" example.tsv > example.csv

• Convert TSV to CSV file (Bash tab):

dsv-to-csv $’\t’ example.tsv > example.csv

79

5 CSV File Syntax

The main standard for CSV files is RFC 4180, though it is possible to find “CSV files” that do
not strictly adhere to RFC 4180. All CSV Utils component programs are able to handle CSV files
compatible with RFC 4180. This includes quoted fields containing embedded special characters (see
below).

Summary of CSV syntax according to RFC 4180:

Terminology and notation:

• special characters:

– comma (,), ASCII 0x2C

– double-quote ("), ASCII 0x22

– carriage-return (\r), ASCII 0x0D, denoted CR below

– linefeed (\n), ASCII 0x0A, denoted LF below

• text characters:

– all the printable ASCII characters, 0x20 through 0x7E (space through ~),
excluding the special characters comma (,) and double-quote (")

• CRLF denotes the two-character sequence carriage-return + linefeed (\r\n)

CSV file syntax:

• a CSV file is a made up of one or more records, records separated by CRLF

• the final record in a CSV file need not be followed by a CRLF terminator

• a record is made up of one or more fields, fields separated by a single comma

• all records must contain the same number of fields

• each field may be either unquoted or quoted

• unquoted fields consist of zero or more text characters

• quoted fields consist of:

1. a double-quote (")

2. zero or more text characters and special characters

3. a double-quote (")

• every double-quote character (") that is embedded within a quoted field must be
escaped: converted to a sequence of two double-quote characters ("")

• both unquoted and quoted fields may be empty (have value of “the empty string”)

Headers:

• the first record in a CSV file may be a header

• the field values in a header are considered as the names of the fields in the CSV file

• header fields must be valid fields as defined above

• CSV files are not required to have a header

80

Detailed points on RFC 4180 syntax and the CSV Utils:

• RFC 4180 specifies CSV file record terminators/separators as the CRLF character sequence
(i.e., C string "\r\n"). However, it is more common (and preferred) on Linux/UNIX systems
to use only single LF (C char ’\n’) characters as record terminators/separators—just as is
done with text file lines. The CSV Utils programs are able to handle either LF only or
CRLF record terminators when reading CSV files. By default, the CSV Utils programs use
LF only record terminators for CSV output. However, the programs each include an option
for outputting CRLF terminators instead.

• “Blank records” are records that are empty: they contain no text characters or comma field
separators. I.e., these are records that would commonly be called blank lines in text files,
and would appear as blank lines if a CSV file was opened in a text editor. (Note, though,
that “blank lines” in text files might also contain only whitespace, but records consisting of
whitespace are not “blank records,” since they would be interpreted as containing a single
unquoted field.)

RFC 4180 specifies that records with no fields are not legal CSV files. However, it is ambiguous
whether a blank record in a CSV file represents an illegal blank (no fields) record or a record
containing one empty unquoted field. Of course, this ambiguity should be an issue only for
“CSV files” consisting of a single field (and such files are questionable as being CSV files).
See Section 6.4 for more information about how the CSV Utils programs handle “blank”
records.

• Records with non-uniform numbers of fields are not legal under RFC 4180. Treatment of
“CSV files” where records contain non-uniform numbers of fields varies among the CSV Utils
programs based on their functionality. Read the documentation carefully if operating on
CSV files containing records with non-uniform numbers of fields.

• RFC 4180 is ambiguous on the treatment of spurious leading/trailing whitespace (i.e., lead-
ing/trailing whitespace that is not part of field values). Spurious whitespace is not allowed by
the CSV Utils. In unquoted fields, it will be included as part of a field’s value. Whitespace
before/after the quotes in a quoted field will be considered a CSV syntax error.

• RFC 4180 addresses only ASCII characters, but modern CSV files may use alternative char-
acter sets. The CSV Utils programs use C char types, i.e., handle only 8-bit/byte char-
acters. However, any character encoding that is backward compatible with ASCII can be
correctly parsed with the CSV Utils, because the CSV special characters can be correctly
located and interpreted by considering only individual bytes. This means that 8-bit ASCII
extensions like Windows-1252/ISO-8859-1 will work fine, as will byte-based but variable-
length encodings like UTF-8. By contrast, UTF-16, which uses 16-bit units, is incompatible!
Use a utility like iconv to convert such files to a compatible encoding, such as UTF-8:
iconv -f UTF-16LE -t UTF-8 infile > outfile

81

DSV Files:

• CSV files are one type of Delimiter Separated Values (DSV) file format. DSV files consist of a
sequence of records, each consisting of fields that are separated by a single delimiter character.
Besides the comma used in CSV files, other common delimiters are the tab character, colon
(:), vertical bar (|), and space character. Unfortunately, many of these alternative DSV
formats are less well formalized and/or less flexible than the RFC 4180 CSV format.

• For example, there is an IANA standard for Tab Separated Values (TSV) files, but that
standard is extremely simple and inflexible: it does not allow embedded tab characters or
carriage-returns or linefeeds, nor empty fields. Because of these limitations, TSV files are
often found that use various approaches to deal with these limitations. For example, embeds
may be escaped: \n (linefeed), \r (carriage-return), \t (tab), \\ (backslash). Alternatively,
the double quoting approach from CSV files may be used for embeds.

• The CSV Utils programs csv-to-dsv and dsv-to-csv can be used to convert to/from alternative
delimiter DSV files. However, these utilities follow the CSV approach for handling embeds:
double-quoting fields.

82

6 General Behavior Notes

6.1 Header Records

Default behavior is intended to be most likely to produce a valid CSV file. So, header records will
be printed by default. Thus, csv-grep will output the header even if no records are matched (check
exit status to determine if any matches, as with standard grep).

Many CSV Utils programs accept options for different behavior:

• -h to process the header (i.e., for CSV files w/o a header)

• -o to omit the header from the output

6.2 File Arguments and Standard Input

All CSV Utils except for csv-edit and csv-get-* do not require file arguments, reading from
standard input otherwise. csv-edit requires a CSV file argument specified, since it modifies the
file. The shell script-specific programs csv-get-field and csv-get-record read from standard
input only, so they do not take file arguments.

Most CSV Utils programs take at most a single CSV file argument.

The CSV Utils programs that can accept multiple file args are:
csv-cat, csv-counts-records, csv-print.

6.3 Empty “CSV” Files

Technically, an empty file (zero bytes in size) cannot be considered a valid CSV file. Nonetheless,
most of the CSV Utils programs will treat an empty file argument (or stdin stream) as a CSV
file with zero records, and will simply terminate immediately upon trying to read the header/first
record. In particular: there will not be any warning/error message. E.g., csv-grep will output
nothing at all (though its exit status will be 1/failure).

The purpose of this approach is to allow for pipelines where some stage results in no records,
without having warning/errors from subsequent stage(s). For example, suppose you have two
csv-grep stages on different fields, and for some input file, they result in zero records passing
through (and headers are not passed). One does not generally desire getting error messages from
all later stages. Rather, getting empty output indicates the stages filtered all records out.

The exceptions to this behavior—i.e., CSV Utils programs that produce warning/error messages
with empty files—are those that:

• operate on specific ranges of records: csv-print, csv-records

• “merge” two CSV files: csv-join, csv-paste

• evaluate/fix files: csv-reformat-date-time, csv-validate

• must have a header record to operate: csv-names2nums

If a program is asked to print particular range of records and there are no such records, it seems
reasonable to print a warning rather than just nothing. Likewise if asked for a certain number of
records, and there are not that many. “Merge” operations require two files, so having any empty
file makes any sort of merge quite impossible.

83

6.4 Blank (Empty) Records

As noted in Section 5, “blank” records (“records” that consist of no characters/fields) are not legal
under RFC 4180. However, there are two key issues with “blank” records that were considered for
the CSV Utils programs handling of them:

• a single field record, where the field value is empty (and unquoted) is indistinguishable from
a truly blank record;

• blank records/lines can be useful to improve readability of spreadsheets;

Blank records might reasonably be assumed to be a single empty field when the CSV file has only a
single field. Otherwise, assuming this would make the CSV file invalid due to creating nonuniform
numbers of fields.

Blank records can be useful as separators in CSV files that are intended to be viewed in spreadsheet
programs. Blank records could also result from stages in pipelines.

When a blank record is being assumed to be a blank, a CSV program could handle it as:

1. pass it through without attempting to process it;

2. process it if reasonable (i.e., if specific field not required);

3. remove it (i.e., don’t process it or pass it through);

4. throw an error;

The general approach that the CSV Utils programs take to “blank” records is to remove them by
default. I.e., they are not processed and not passed through. However, because of the above noted
considerations, many of the CSV utils programs can accept one or both of the following options,
which modify their behavior with regard to blank records:

• -b – pass blank records through (unprocessed);

• -1 – interpret blank records as single empty field records;

Read the documentation for a program if operating on CSV files containing “blank” records. If an
option is not available for a program, it is because it makes no sense. E.g., passing blank records
through cannot reasonably be done for csv-sort.

84

7 Integrating CSV Utils with Standard Linux Utilities

Many of the standard Linux/UNIX utilities assume that files consist of linefeed-terminated (\n)
lines of text. For example: AWK, cut, grep, sed, sort, tail, wc, etc. While these utilities can
be applied to many CSV files, valid CSV files can include embedded linefeeds—i.e., linefeeds inside
of quoted fields (see CSV File Syntax for more info). CSV files that contain embedded linefeeds
will generally cause CSV records to be incorrectly processed by the standard Linux/UNIX utilities
mentioned above.

While CSV Utils programs can replace much of the functionality one might want from standard
Linux/UNIX utilities, it could still be desirable to be able to apply standard utilities from time to
time. Since the CSV Utils programs were designed to be easily used in pipelines, it is often possible
to fix issues with the standard utilities by integrating CSV Utils programs into a pipeline along
with the standard utilities.

A number of GNU versions of standard Linux/UNIX utilities have an option that will interpret
“lines” as being terminated by null chars (\0’s) instead of linefeeds (i.e., “zero terminated” files).
The GNU utilities that are known to have this capability are: comm, cut, head, join, numfmt,
paste, sed, shuf, sort, tail, uniq.

Several CSV Utils programs have an option that will cause output records to be terminated by null
chars (instead of linefeeds). These programs can then be used to start a pipeline that feeds into
standard utilities, allowing those utilities to deal with CSV files containing embedded linefeeds.
The CSV Utils programs with this capability are: csv-cat, csv-cut, csv-get-record, csv-records.

Here is an example pipeline, that uses tail to print the last 5 records in a CSV file, even if the
CSV file contains embedded linefeeds:
csv-cat -z embeds.csv | tail -z -n5 | null2lf

• -z option is used with with csv-cat to null-char-terminate CSV records;

• -z option is used with with tail to see null-char-terminated records as lines;

• script null2lf is used last to convert the null chars to linefeeds;

null2lf is a simple one-line shell script provided with the CSV Utils programs, which can be used
to convert “zero-terminated” files back to valid (linefeed-terminated) CSV records. It runs tr to
convert null-char’s (\0’s) to linefeeds (\n’s).

GNU AWK can also be used with CSV files containing embedded linefeeds, but a bit more effort
is required. By default, AWK breaks files into “input records” on linefeeds. However, it is possible
to change AWK’s record separator (RS), so files are broken into records on null chars. CSV Utils
programs can then be used to feed AWK CSV records that will be properly parsed.

Here is an example pipeline, with csv-cat feeding GNU AWK code that simply outputs CSV
records prefixed with a record number:
csv-cat -z embeds.csv | awk -v RS="\0" -v OFS="," ’{print NR,$0}’

• record separator (RS) is changed to null char;

• output record separator (ORS) is "\n" by default;

• but output field separator (OFS) default is spaces, so it must be changed to CSV format;

Note that this AWK issue does not apply to the CSV Utils programs that use AWK code for pro-
cessing logic (csv-grep-cond, csv-grep-cond-records, csv-process-field, csv-process-records). Those
programs automatically make required modifcations to their (internal) AWK invocations.

85

8 AWK Code Basics

Several CSV Utils programs make use of AWK to provide the ability to supply program code to
manipulate or evaluate CSV files: csv-grep-cond, csv-grep-cond-records, csv-process-field,
and csv-process-records.

These programs utilize the system-installed AWK, run in a subprocess. The system AWK for Linux
is assumed to be GNU AWK. Alternative AWK versions may not be compatible with the CSV Utils
programs. The GNU AWK manual can be found at:
https://www.gnu.org/software/gawk/manual/gawk.html

Pay attention to the AWK Coding Requirements information in the manual sections for each of
the relevant CSV Utils programs, as failure to follow these requirements can result in unwanted
behavior.

In general, AWK code used with the CSV Utils should:

• Not modify RS, FS, ORS, OFS, FPAT.

• Not call print or printf.

• Not call next or nextfile.

Invalid AWK code passed to any of the CSV Utils programs will generally result in error messages
from the AWK subprocess, and termination of the programs. Fix the coding errors and rerun.

8.1 AWK Expressions vs Programs

Two of the CSV Utils programs that make use of AWK code, require AWK expressions:
csv-grep-cond and csv-grep-cond-records.

The other two CSV Utils programs that make use of AWK code, require AWK programs:
csv-process-field and csv-process-records.

An AWK expression, is AWK code that evaluates to (returns) a value. I.e., it is what could be used
in an if or while condition. For example, “$0>=10”, which evaluates to 1 or 0 (for true or false)

An AWK program, must be a syntactically valid AWK program, and can perform arbitrary manipu-
lation of the CSV record information passed to it. See csv-process-field and csv-process-records

to understand how record information is passed, and how records can be modified by making as-
signments to $0, $1, etc.

An AWK program consists of a set of rules, where each rule consists of a (optional) pattern and an
action. It is expected that AWK programs used with csv-process-field and csv-process-records
will be fairly simple, similar to the kinds of AWK “programs” typically used with shell scripts. Thus,
the program code may consist of a single rule, without a pattern, so just an action. Each action is
enclosed in curly braces ({}’s). So AWK program code used with CSV Utils is often going to be
of the form: “{action}”, where action involves an assignment. E.g., “{$0=substr($0,1,2)}” or
“{if($1!="")$2=$1}”.

A general description of AWK program syntax is beyond the scope of this manual. See the GNU
AWK manual: https://www.gnu.org/software/gawk/manual/gawk.html

AWK code should generally be quoted when supplied to CSV Utils, to avoid issues with the shell
interpreting AWK code characters as shell metacharacters. Using Bash single quotes to surround
AWK code simplies the use of double quotes for strings: e.g., ’$0=="Test"’ or ’{$0=substr($0,1,3)}’

86

8.2 Assignments to $0

With csv-process-field, the new value for FIELD in each CSV record will be the value of $0 after
the AWK code runs on the CSV record. The main way to change the value of FIELD in CSV records
is by having the AWK code assign a new value to $0: e.g. $0=newvalue. One tricky aspect of this
is that assignments to $0 must be done with string values! Typically, AWK automatically converts
back and forth between strings and numbers, as required. This is not the case with an assignment
to $0 however. Assigning a number to $0 results in $0 becoming the empty string. E.g., code like
$0=int($0+0.5) will result in $0 having an empty string value.

An easy way to ensure $0 gets a string value even if being assigned from what AWK considers
a number, is to always concatencate the value with the empty string in the assignment to $0:
$0=""int($0+0.5) Another approach around this problem is to assign to $1 (field 1) instead of $0,
since then number to string conversion happens as normal. (Do not do assignments to fields > 1,
as this will cause fields to be added to the CSV records.) One can also use sprint() (see below),
to make sure a numeric value is a string for $0. sprint() also allows one to have control over the
numeric conversion.

8.3 Formatting Real Numbers

AWK automatically converts numbers to strings using a default format (held in CONVFMT). The
more general approach for outputting numeric values is to use the sprintf() function:
$0=sprintf("%.2f",$0+0.5).

Using sprintf() allows one to have greater control over the format of resulting numbers. In
particular, one can control the precision (number of decimal points) that get used with real numbers.
One can also use sprintf() to make sure a numeric value is a string for $0 (see above).

8.4 Alternative Cases in AWK Code

If different processing actions need to be taken depending on e.g. FIELD’s value, AWK code needs to
be structured to ensure that only the correct code case always gets run. There are two approaches
that can be used:

• a single rule containing if-then-else-if-else logic

• multiple rules with non-overlapping patterns

For example, consider processing a field that could include (positive) integers or reals, where we
want to leave integer values unchanged, but want to round real values to integers.

One approach to rounding only reals would be to use a rule without a pattern, and have appropriate
if-then logic within the rule’s action:
{if ($0 ~ /^[0-9]+\.[0-9]+$/) {$0=sprintf("%d",int($0+0.5))}}

Another approach would be to use a rule pattern so that the action is applied only to reals:
/^[0-9]+\.[0-9]+$/{$0=sprintf("%d",int($0+0.5))}

With both examples, only real values are modified, because the regex will not match integers. In
the first case, the rule will get fired on all records, but modify only those with real values. In the
second case, the rule will get fired only with reals, so integers will not be affected, because no code
will be run.

87

When using multiple AWK rules that have different regex patterns, one will typically want to
ensure that only a single rule applies to each field (since AWK will apply all rules that match
a field value). Ensuring that only a single rule’s pattern matches can sometimes be tricky, since
there are limited regex “negation” oeprators. One can however, negate an entire rule pattern:
!/^[0-9]+\.[0-9]+$/{...}.

This means that having just two alternative rules is generally easy:

Rule to process reals:

/^[0-9]+\.[0-9]+$/ {

...

}

Rule to process all else:

!/^[0-9]+\.[0-9]+$/ {

...

}

If multiple, alternative code cases are required, it will probably be simpler to structure the AWK
code as a single rule that applies to all fields, and use appropriate if-then-else-if-else logic within
that rule to ensure that only a single case applies to each FIELD value:

{

intval = int($0)

frac = $0 - intval

if (frac == 0)

$0 = intval

else if (frac >= 0.5)

$0 = intval + 1

else #frac < 0.5

$0 = intval

}

Note that the above code can be written on a single line by using ;’s:
{intval=int($0);frac=$0-intval;if(frac==0)$0=intval;else if(frac>=0.5)$0=intval+1;...}

However, since this is rather long and confusing to read, it is probably better committed to a file.

8.5 AWK getline

The CSV Utils that make use of AWK, set AWK’s RS and FS parameters to ensure AWK correctly
interfaces with the CSV Utils pipelines. This can result in AWK’s getline not working as it
typically does. However, this should have little practical effect, as getline is an advanced feature
of AWK. The GNU AWK manual even says this: “The getline command is used in several different
ways and should not be used by beginners.”

The only use of getline that is compatible with the CSV Utils is to run a command/program that
produces a single line of output that must be captured (as a string). Using getline to read lines
from files is absolutely not compatible with the CSV Utils!

88

Here is a function that can run a command-line command/program and capture its (single line of)
output, and is compatible with the CSV Utils:

Function to run a command-line command and return its output.

Returns -1 on error from command.

function runcmd(cmd, cmdwredir,value,status)

{

cmdwredir = cmd" 2>/dev/null"

status = cmdwredir | getline value

close(cmdwredir)

#Check for command failure and return -1:

if (status != 1) return -1

#Remove trailing linefeed when RS != \n:

sub("\n","",value)

return value

}

The above function can be used, for example, to run the date command as follows:

Function to run a the date command-line command and return its output.

Returns "" (empty string) on error running date command.

function rundate (datetime,format,timezone, dateout)

{

dateout = runcmd("TZ="timezone " date -d\"" datetime "\" \"" format "\"")

if (dateout == -1) return ""

return dateout

}

89

9 Date-Time Format Strings

Several CSV Utils programs make use of format strings to interpret or format date-time val-
ues in CSV file fields: csv-reformat-date-time, csv-sort, csv-sort-mult. Date-time format
strings have to be consistent with the Linux/UNIX functions strftime(3) and strptime(3). See
“man strftime” or “man strptime” for complete information.

Here are the most frequently used format string directives for individual date-time items:

%a The name of the day of the week, abbreviated.

%A The name of the day of the week, full.

%b The month name, abbreviated.

%B The month name, full.

%d The day of the month (range 01 to 31).

%H The 24-hour clock hour (0-23).

%I The 12-hour clock hour (1-12).

%m The month number (1-12).

%M The minute (0-59).

%p AM or PM.

%P am or pm.

%S The second (0-60; 60 may occur for leap seconds).

%y The year without a century (range 00 to 99).

%Y The year including the century (e.g., 1998).

There are also a few format string directives for combination date-time items:

%D American style date, equivalent to: %m/%d/%y.

%F ISO style date, equivalent to: %Y-%m-%d.

%r 12-hour clock time w/seconds, equivalent to: %I:%M:%S %p.

%R 24-hour clock time w/o seconds, equivalent to: %H:%M.

%T 24-hour clock time w/seconds, equivalent to %H:%M:%S.

Here are a few common example date-time values and appropriate format strings:
(xx/xx/xx is “American” style date: month/day-of-month/year)

Date-Time Format String Alternative Format

1/5/21 3:47 “%m/%d/%y %H:%M” “%D %R”
01/05/21 3:47 “%m/%d/%y %H:%M” “%D %R”
01/05/21 3:47:32 “%m/%d/%y %H:%M:%S” “%D %T”
1/5/2021 3:47 “%m/%d/%Y %H:%M” “%m/%d/%Y %R”
01/05/2021 3:47 “%m/%d/%Y %H:%M” “%m/%d/%Y %R”
01/05/2021 3:47:32 “%m/%d/%Y %H:%M:%S” “%m/%d/%Y %T”
2021-01-05 3:47 “%Y-%m-%d %H:%M” “%F %R”
2021-01-05 3:47:32 “%Y-%m-%d %H:%M:%s” “%F %T”

Note how separator characters like /, :, -, and whitespace must be appropriately included along
with the date-time directives in format strings.

90

Important note about %y and %D:

The %y and %D formats can lead to misinterpretation of dates, so must be treated very carefully!

Glibc currently interprets two-digit year values as follows:

• 69 to 99: 1969 to 1999

• 0 to 68: 2000 to 2068

Thus, if dates in CSV files extend from before 1969 to after 1969, two-digit years will be incorrectly
interpreted, so must be converted to four-digit format. csv-replace-field could be used to do this,
taking into account what year move from the 1900’s to the 2000’s.

91

10 Build-Time Parameters

The header file libcsv.h contains a number of preprocessor constants that control various aspects
of the CSV Utils programs when they are built (compiled). This section describes these parameters,
in case changes are necessary. Note that after any changes are made, the CSV Utils programs will
have to be recompiled.

10.1 CSV File Size Limits

Since a key goal of these utilities is speed, fixed-size memory blocks are used when CSV records
or fields must be stored. While the fixed-sizes should be sufficient for virtually all CSV files, if
extremely large CSV files need to be processed, memory sizes may have to be increased. Alterna-
tively, if the settings are known to be much larger than necessary, sizes could be reduced to reduce
process sizes and slightly improve performance. Note that CSV Utils programs will throw an error
if a limit is exceeded!

The CSV file size preprocessor constants along with their default values, are:

• MAX_FIELDS: 512
The maximum number of fields allowed in each CSV record.
An array to hold fields, char* fields[MAX_FIELDS], will be one page: 512× 8B = 4096B.

• MAX_RECORD_SIZE: 65536
The maximum size (in bytes) allowed for each CSV record.
An array to hold records, char record[MAX_RECORD_SIZE], will be 16 pages (same as pipe
buffer size).

• MAX_FIELD_SIZE: 8192
The maximum field size (in bytes) allowed for functions that return a field.
An array to hold fields, char field[MAX_FIELD_SIZE], will be 2 pages.

Note that no limit is imposed on the number of records that can be in CSV files.

10.2 Embedded Characters Replacements

Some CSV files contain carriage-return (\r) and linefeed (\n) characters embedded in quoted fields.
These are valid CSV files in line with RFC 4180, and the CSV Utils programs can handle such files.
However, embedded CR/LF characters will make it impossible to use most standard Linux/UNIX
text file utilities (e.g., grep, sort, wc).

The CSV Utils program csv-clean can remove embedded CR/LF characters, replacing them with
text. This can be useful because it will allow those CSV files to be processed using standard
Linux/UNIX text file utilities, as well as allowing them to be more easily viewed as text.

Four preprocessor constants control what text is used when embedded CR/LF characters are re-
placed. The default values make it quite easy to view fields as text. The length of (numbers of
characters in) the replacement text sequences must be provided as well, to eliminate the costs of
repeatedly having to determine the replacement string lengths in code.

While the default replacements are easy to read, a common approach with TSV files is to replace
the characters with their C language (two character) escape sequences: \r and \n. It should be
easy to substitute alternative strings using the sed utility in a pipeline, if desired.

92

The four relevant preprocessor constants and their default values are:

• CR_REPLACEMENT: "<CR>"
The replacement text for embedded CR’s (\r’s).

• CR_LENGTH: 4
The length of CR_REPLACEMENT.

• LF_REPLACEMENT: "<LF>"
The replacement text for embedded LF’s (\n’s).

• LF_LENGTH: 4
The length of LF_REPLACEMENT.

10.3 Utility Program Paths

Several CSV Utils programs make use of standard Linux/UNIX utility programs run in subprocesses
and communicating via pipelines. These utility programs are: awk and sort. While the paths for
these programs could be found automatically via a user’s PATH (e.g., using execvp()), this can
involve some overhead from trying each PATH component. Since, again, speed is a key goal of these
CSV Utils programs, the standard paths for these utility programs are provided via preprocessor
constants. This allows the CSV Utils programs to avoid having to search (execv() is used instead
of execvp).

Should awk or sort be installed in non-standard locations, the following preprocessor constants
will need adjusting:

• AWK_PATH: "/usr/bin/awk"

• SORT_PATH: "/usr/bin/sort"

93

11 Performance

The CSV Utils component programs are all written in C for efficiency, and also generally written
in a style that emphasizes execution speed. In some cases, the emphasis on speed has meant there
is some “code duplication” to avoid repeated options testing on every field or even in every record.
While this might slightly hamper maintenance programming, it is intentional, having had its value
confirmed by testing on large CSV files.

Performance testing was done on a machine with an Intel Core i7-6700 CPU @3.40GHz. A CSV
file with a header plus one million records was used for testing. Each record had 10 fields. Total
file size was 161MB, with records on average 180 bytes. The test files were always cached due to
repeated tests and 32GB of RAM.

The goal of this testing was to establish base speeds of the programs, not e.g., average run time on
a particular machine with a particular load. After some testing, it was decided to carry out four
sets of 25 program runs (five sets of 10 runs with slower programs), and report the average of the
minimum elapsed times from each of the run sets, taking the ceiling of the average (to the next full
hundredth/tenth of a second). This was found to be very consistent, and should be representative
of the inherent speeds of these programs (unlike, e.g, mean run times, which vary with machine
load).

Average minimum elapsed time results for select CSV Utils:

• csv-counts-records test.csv

real time: 0.57 sec (time to read/parse CSV file and count records)

• csv-records 1 test.csv > out.csv

real time: 0.76 sec (time to read/parse all CSV records and print out new file)

• csv-cut "1,5,6,10" test.csv > out.csv

real time: 0.81 sec

• csv-grep 6 "PROBLEM" test.csv > out.csv

real time: 0.69 sec (regex matching, matches 59,936 records)

• csv-grep -F 6 "PROBLEM" test.csv > out.csv

real time: 0.63 sec (substring matching, matches 59,936 records)

• csv-grep 6 "Disease" test.csv > out.csv

real time: 0.79 sec (regex matching, matches 714,964 records)

• csv-grep -F 6 "Disease" test.csv > out.csv

real time: 0.73 sec (substring matching, matches 714,964 records)

• csv-grep-cond 6 ’match($0,"PROBLEM")’ test.csv > out.csv real time: 5.1 sec (equiv-
alent of first csv-grep example)

• csv-paste test.csv test.csv > out.csv

real time: 1.47 sec

• csv-process-field -e ’{}’ 7 test.csv > out.csv

real time: 5.2 sec (baseline minimum, since no actions)

• csv-process-field -e ’{split($0,arr,".");$0=arr[1]}’ 7 test.csv > out.csv

real time: 5.8 sec

• csv-sort 1 test.csv > out.csv

real time: 2.2 sec

• csv-sort -n 1 test.csv > out.csv

real time: 2.3 sec

94

• csv-sort -D"%Y-%m-%d %T" 4 test.csv > out.csv

real time: 3.0 sec

• csv-sort-mult -k1 test.csv > out.csv

real time: 3.3 sec

• csv-sort-mult -k7 test.csv > out.csv

real time: 3.7 sec

• csv-sort-mult -k1 -k7 test.csv > out.csv

real time: 8.8 sec

All CSV utils programs rely on library functions, which ultimately rely on base functions that read
and parse CSV file syntax. The speed of these functions thus determines ultimate performance.
Tests were run by directly calling the base read/parse functions, and without doing any output.
The following average minimum runtimes were found:

• base “skip” function (merely reads/parses, does not save records):
real time: 0.522 sec

• base “read” function (reads/parses and saves records):
real time: 0.572 sec

• base “parse” function (reads/parses and provides fields):
real time: 0.617 sec

95

	Introduction
	Utilities List
	Usage Examples
	The Utilities
	csv-cat
	csv-clean
	csv-counts-fields
	csv-counts-records
	csv-cut
	csv-edit
	csv-format
	csv-get-field
	csv-get-record
	csv-grep
	csv-grep-cond
	csv-grep-cond-records
	csv-join
	csv-names2nums
	csv-paste
	csv-print
	csv-process-field
	csv-process-records
	csv-records
	csv-reformat-date-time
	csv-remove-duplicate-keys
	csv-replace-field
	csv-sort
	csv-sort-mult
	csv-validate
	csv-to-dsv
	dsv-to-csv

	CSV File Syntax
	General Behavior Notes
	Header Records
	File Arguments and Standard Input
	Empty ``CSV'' Files
	Blank (Empty) Records

	Integrating CSV Utils with Standard Linux Utilities
	AWK Code Basics
	AWK Expressions vs Programs
	Assignments to $0
	Formatting Real Numbers
	Alternative Cases in AWK Code
	AWK getline

	Date-Time Format Strings
	Build-Time Parameters
	CSV File Size Limits
	Embedded Characters Replacements
	Utility Program Paths

	Performance

