
C Basics 1: Overview & C vs. Java

1. Overview of C and C vs. Java

• history of C

• C standards

• C vs. Java characteristics

2. C Program Elements

3. The Preprocessor

4. Identifiers and Data Types

5. Pointers and Arrays

6. Strings

7. Library I/O

C Basics 1: Overview & C vs. Java c©Norman Carver



C Basics 1: Overview & C vs. Java

8. Errors and Error Handling

9. Functions and Parameter Passing

10. Dynamic and Static Memory

11. Multidimensional and String Arrays

12. Structs (Structures)

13. Higher-Order Functions

14. Variadic Functions

15. Miscellaneous

C Basics 1: Overview & C vs. Java c©Norman Carver



Overview of C

C was developed by Dennis Ritchie at AT&T’s Bell Labs, starting

in 1969.

A key goal was to provide a “high-level” programming language

to support development of portable, cross-platform programs

(up to that point, many programs were being written in machine-

specific assembly language).

Richie also co-developed UNIX (along with Ken Thompson and

others) starting around the same time.

By 1973, UNIX had been implemented primarily in C, becoming

the first (largely) portable operating system.

C Basics 1: Overview & C vs. Java c©Norman Carver



Overview of C (contd.)

While C is much more abstract than assembly language, it lacks

features found in modern “high-level” programming languages

that are designed to support programming.

C programs are intended to be able to be made nearly as efficient

as assembly language programs.

It is often said that a (properly designed) C program will be

about as fast as is possible.

With a C program, what occurs at runtime is largely only what

the program indicates will happen.

By contrast, in a Java program, every array access will be bounds

checked, garbage collection routines will be run periodically, etc.

C Basics 1: Overview & C vs. Java c©Norman Carver



Overview of C (contd.)

While programmers new to C are often dismayed by the language

failing to “hold their hands” and help discover their bugs, if a

program is properly designed, automatic operations such as array

bounds checking are simply a waste of CPU cycles.

C also differs from most modern high-level languages in allowing

the user to directly access and manipulate memory, via pointers.

C remains the most commonly used language for programming

with system calls and for system programming (coding of

operating systems and embedded systems software).

C is also one of the most widely available languages, with free-

of-cost compilers for virtually every computer architecture.

C Basics 1: Overview & C vs. Java c©Norman Carver



C Language Standards

In 1978, Brian Kernighan and Dennis Ritchie wrote the first book

describing C: “The C Programming Language.”

This book became the de facto language standard, often referred

to as K&R C.

The first standardized versions of C were ratified by ANSI in

1989 and ISO in 1990, commonly referred to as C89 or C90.

A revised version of the ISO C standard was published in 1999,

commonly referred to as C99 (its formal name is ISO/IEC

9899:1999).

Among the features added in C99 were: variable-length arrays

(array size determined at runtime), intermingling of declarations

and code, allowing index variable declarations in for statements,

new types (long long int, _Bool, complex), and inline functions.

C Basics 1: Overview & C vs. Java c©Norman Carver



C Language Standards (contd.)

The latest C standard was ratified by ISO in 2011: ISO/IEC

9899:2011.

The draft standard had been known as C1X, but the ratified

standard is referred to as C11.

Key extensions of general interest include: better Unicode support,

generic function selector (_Generic), and language support for

multithreaded programs.

The multithreading support involves several elements:

an uninterruptible data type (_Atomic), thread specific/local storage,

and library functions that provide thread operations (creation,

mutexes, condition variables, etc.).

This standard also addresses special uses such as embedded

processors and better defines various aspects of implementations.

C Basics 1: Overview & C vs. Java c©Norman Carver



C Language Standards (contd.)

Most C compilers, e.g., GCC, now support all C99 features.

However, C99 features may not all be enabled by default, requiring

options to compile code that uses them.

E.g., with GCC: -std=c99

C11 support is still incomplete in most current C compilers.

GCC 4.9 is supposed to support virtually all of the C11 standard

when it is released (sometime in 2014).

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java

Java is a “C family” language and so shares much syntax with

C, such as declarations, control constructs, operators, etc.

C is a purely procedural language, however, while Java is a

purely object-oriented language.

C does not have any support for OOP concepts like classes.

In a procedural language like C, programs are structured in terms

of functions (subroutines) operating on data held in variables.

The focus is on the actions that need to be taken to accomplish

the goals of the program.

With OOP, programs are structured in terms of classes of objects

and the operations that can be done to them.

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java (contd.)

C Java

Programming pure procedural pure OOP
Paradigm

Composite structs classes
Data Types

Inheritance no single:
subclass extends

Encapsulation files classes
Mechanism

Compilation files classes (files)
Modularity

Memory manual garbage collection
Management malloc(), realloc(), new

(heap) free(), etc.

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java (contd.)

C Java

Pointers explicit, manipulable: implicit, not manipulable
defined: basetype* called references
int *ip, i; all classes
ip = &i + 1;

Invalid NULL null

Pointer (void *)0

Numeric integer: char, short, integer: byte, short,
Types int, long, long long int, long

real: float, double, real: float, double
long double (C99)

other: _Bool (C99)
sign: signed, unsigned (all integers signed)
minimum sizes only defined sizes

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java (contd.)

C Java

Boolean <C99 no, use int’s yes:
Type C99: _Bool (0/1 int) false, true

0 is false
1 is standard true, but
any 6= 0 considered true

Characters ASCII encoding Unicode encoding
single byte integer two bytes
constants: ’a’, ’\141’ constants: ’a’, ’\u09AF’
C99: wide char’s
C11: Unicode

Strings non-builtin type: builtin reference type:
type char* (char array, String

requires ’\0’ sentinel)
constants: "abc" constants: "abc"

String string library functions String class methods
Comparisons e.g., strcmp() e.g., .equals()

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java (contd.)

C Java

Implicit extensive: limited:
Type promotion & demotion promotion
Conversion may not preserve values:

unsigned int→signed int

Type yes: same
Casting (type) var/expr

Arrays access: arr[i] access: arr[i]

declaration: declaration:
int iarr[constant] int[] iarr =

(C99 allows expr) new int[expr]

static size static size (vs. vectors)
no bounds checking auto bounds checking

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java (contd.)

C Java

Main int main(int argc, public static void

char *argv[]) main(String[] args)

int main()

Operators assignment: =, +=, etc. same
arithmetic: +,++, etc. same
relational: ==, !=, etc. same
logical/bitwise: &&, &, etc. similar

Selection if, else, switch same
Constructs

Looping for, while, do-while same
Constructs

Global yes no, but:
Variables (external definitions) public static members

Automatic generally no: yes (to 0 or null)
Variable global and static only
Initialization

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java (contd.)

C Java

Subroutines functions class methods

Subroutine any type plus void same
Values

Parameter call-by-value: call-by-value:
Passing but pointer params but reference params

act like call-by-ref act like call-by-ref

Generic use untyped pointers: generics system
Functions void* (SE 5.0+)

C11: generic selector
_Generic

Function no yes (methods)
Overloading

Operator no no
Overloading

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java (contd.)

C Java

Function yes: SE 8.0+: lambdas
Arguments hofunc(void (*h)(int)); (previously only
(Callbacks) messy alternatives

to achieve effect)

Variadic yes: (stdarg.h) SE 5.0+
Functions printf(char *fmt, ...);

Optional or no no
Default
Parameters

Preprocessor yes no

Header Files yes no

Namespaces no, single space yes:
(for ordinary identifiers) package, import

Exception no yes:
Mechanism try, catch

C Basics 1: Overview & C vs. Java c©Norman Carver



C vs. Java (contd.)

C Java

Concurrency: via system calls limited:
Processes (fork(), etc.) ProcessBuilder class

Concurrency: via system calls yes:
Threads (Pthreads) Thread class

C11: yes java.util.concurrent

package

C Basics 1: Overview & C vs. Java c©Norman Carver


