
C Basics 6: Strings

1. Overview of C and C vs. Java

2. C Program Elements

3. The Preprocessor

4. Identifiers and Data Types

5. Pointers and Arrays

6. Strings

• strings are char arrays

• null char sentinel

• comparing strings

• the C String Library

• strings vs. char’s

7. Library I/O

C Basics 6: Strings c©Norman Carver



C Basics 6: Strings

8. Errors and Error Handling

9. Functions and Parameter Passing

10. Dynamic and Static Memory

11. Multidimensional and String Arrays

12. Structs (Structures)

13. Higher-Order Functions

14. Variadic Functions

15. Miscellaneous

C Basics 6: Strings c©Norman Carver



Strings

C does not have a built-in string type (like Java does).

Instead, a “C string” is:

• an array of char (characters)

• terminated by the null char, ’\0’ (a sentinel)

Because they are char arrays, and array variables are effectively

pointers, strings are effectively represented as pointers.

String types can be denoted as either arrays or pointers:

“char str[]” or “char *str”

It is more common to see the “char*” type specification for

function parameters.

C Basics 6: Strings c©Norman Carver



Strings (contd.)

To allocate memory for a string of a particular length, we use

notation like:

char str[4]; (can hold a three-char string + ’\0’)

String constants can be denoted with double-quote notation:

"abc def"

(same as in Java)

The constant "abc def" is effectively the address of a block of 8

bytes of memory, each byte holding a char:

1000 1005 1010 1015 1020

'a' 'b' 'c' ' ' 'd' 'e''f' '\0'

C Basics 6: Strings c©Norman Carver



String Initialization

C allows several different ways to initialize strings:
(all are 4-element arrays that hold strings of length 3)

char str[4];
str[0]=’a’; str[1]=’b’; str[2]=’c’; str[3]=’\0’;

char str[4];
str = "abc"; //Error! Not allowed by C standard

//as would change an array pointer!

char str[] = {’a’,’b’,’c’,’\0’};

char str[] = "abc";

char *str = "abc";

char *str = malloc(4);
str[0]=’a’; str[1]=’b’; str[2]=’c’; str[3]=’\0’;

C Basics 6: Strings c©Norman Carver



The Null-Char Sentinels

Since C strings are arrays, and C doesn’t maintain array sizes at

runtime, the only way that C can detect the end of a string is

by finding the null-char sentinel.

Failure to null-terminate strings is a common problem for new C

programmers.

Remember that “reaching the array end” is meaningless in C

since C doesn’t know where the array end is.

The following code is likely to cause problems, since it fails to

properly terminate the “string” str:

char str[4];

str[0] = ’a’; str[1] = ’b’; str[2] = ’c’;

C Basics 6: Strings c©Norman Carver



The Null-Char Sentinels (contd.)

(Remember that variables are not initialized in general, so the

bytes in str will not have been “zeroed out”!)

Many string-related functions would continue tracing through

str[3] and the successive bytes in memory, until a zero-byte is

encountered (and interpreted as the string end).

This can cause strange results (e.g., “garbage” output) or even

segmentation faults (illegal memory access).

If you are working with C strings and seeing “garbage” or segfaults,

look carefully at your code to see if you are failing to null

terminate strings.

C Basics 6: Strings c©Norman Carver



Strings Have Fixed Maximum Size

Strings are arrays, and standard arrays have fixed size.

It is common to allocate arrays large enough for the maximum

size string expected and normally use only a portion of it:

char str[15] = "default";

The null-char sentinel marks the end of the used space:
1000 1005 1010 1015 1020

'a' 'u' 'l' 't''d' 'e''f' '\0'

str last byte of str

? ? ? ? ? ? ?

end of string

(Remember that str can hold a string of a maximum length of

14 characters because the null-char sentinel consumes one byte!)

C Basics 6: Strings c©Norman Carver



Comparing Strings

Because strings are not a built-in type in C, you cannot use the

equality operator, ==, to test whether two strings are the same

(contain the same seqence of characters).

Instead, you must use a string library function like strcmp().

“if (str1 == str2)...” is syntactically valid, so it will not cause

compiler errors, but it is almost never what is wanted.

What == will do is test whether the two strings are at exactly

the same memory address—i.e., the same string object.

This is exactly what happens in Java with reference types, which

is why you use .equals() or .compareTo() when comparing String’s.

C Basics 6: Strings c©Norman Carver



The C String Library

Strings typically must be manipulated using library functions from

the C String Library:

• strlen – length of a string (not counting final ’\0’)

• strcmp, strncmp – compare two string to determine if equal

or their lexicographic order

• strchr – determine if a char occurs in a string

• strcat, strncat – concatenate two strings (does not allocate

dynamic memory for result)

• strstr – determine if a string is a substring of another string

• strcpy, strncpy – copy a string (does not allocate memory)

C Basics 6: Strings c©Norman Carver



The C String Library (contd.)

Note that in order to use the C String Library functions, a
program must contain the following header include:
#include <string.h>

One thing to note about the string library functions is that there
is not a substring function.

Substrings are created using pointer arithmetic and strcpy():

char full_name[] = "John Q. Smith";

char *last_name = full_name + 8; //uses full_name array

char new_last[6]; //create space to hold separate last name

strcpy(new_last, full_name + 8); //copy last name over

char middle_init[3];

strncpy(middle_init, full_name + 5, 2);

middle_init[2] = ’\0’; //Must make middle_init valid C string

C Basics 6: Strings c©Norman Carver



String Examples

Example code using strings:

//Make a copy of a string:
char str[20];
strncpy(str,"sample string",20);

//Read in a line from terminal:
char line[100];
fgets(line,100,stdin);

//Print out str and line:
printf("str: %s\nline: %s\n\n",str,line);

//Another way to make a copy of a string:
char *linecpy = malloc(strlen(line)+1);
strcpy(linecpy,line);

/Checking if str is "test":
if (strcmp(str,"test")==0)...

C Basics 6: Strings c©Norman Carver



Strings vs. Characters

Beginning C programmers often have trouble understanding the

difference between strings and char’s.

Since a C string is a null-char-terminated array of char, "A" and

’A’ are not equivalent:

• "A" is of type char*, and is the two-element array: ’A’, ’\0’

• ’A’ is of type char, and is the single byte/char ’A’

Another source of confusion is the empty string, "":

• since it is a string, it must be a char array;

• it is the one-element array containing of just ’\0’

• "" is not the same as ’\0’, however

• "" and ’\0’ are of different types so not even comparable

C Basics 6: Strings c©Norman Carver



Escape Sequences

We have seen that there are a number of escape sequences

that can be used to represent characters.

These escape sequences can be included in strings to represent

the corresponding characters.

They are heavily used to include non-printing characters such as

newlines:

printf("The value of x is: %d\n", x);

C Basics 6: Strings c©Norman Carver


