
Linux Basics 2: Filesystem Contd.

To work effectively on a Linux system, it is necessary to

understand a number of the basic aspects of Linux:

• The Filesystem (directories and files)

– the logical filesystem tree (directory structure)

– pathnames

– file naming scheme

– key commands

– standard directories

– regular files vs. special files

– physical filesystems

– additional commands

• Users, Groups, and File Permissions (security mechanisms)

• Processes (running programs and their attributes)

Linux Basics 2: Filesystem Contd. c©Norman Carver



Standard Directories

There has been a major effort in recent years to standardize the

layout of directories in the Linux filesystem, so most distributions

are very similar.

This project is called the Filesystem Hierarchy Standard:

www.pathname.com/fhs

The project specifies a set of directories that must exist, and

what their purpose is, so things like system libraries are always

in standard locations.

Linux Basics 2: Filesystem Contd. c©Norman Carver



Standard Directories (contd.)

The standard “top-level” directories are:

/bin – (essential) binary/executable files

/boot – bootable kernel files

/dev – device files

/etc – configuration files

/home – user home directories (as /home/username)

/lib – (essential) libraries and kernel modules

/media – mount points for removable media (newer)

/mnt – mount points for removable/temporary media

/opt – optional software

Linux Basics 2: Filesystem Contd. c©Norman Carver



Standard Directories (contd.)

The standard “top-level” directories (contd.):

/proc – pseudo files that display/change OS params

/root – home for the root user

/sbin – system binaries and executables (usually only in root’s

search path)

/tmp – temporary files (world writable)

/usr – non-host specific, read-only information,

secondary hierarchy: e.g., /usr/bin, /usr/lib, etc.

contains /usr/local for purely local/non-system files (cannot

be overwritten by standard system software), and yet another

hierarchy: e.g., /usr/local/bin, etc.

/var – variable files like log files

Linux Basics 2: Filesystem Contd. c©Norman Carver



Regular vs. Special Files

In Linux, many objects that can be opened and read from or

written to are treated largely as if they are disk files, including:

• regular files (normal disk files)

• directories

• symlinks

• FIFOs and sockets (IPC mechanisms)

• devices (hardware):

All non-regular files are called special files.

Linux Basics 2: Filesystem Contd. c©Norman Carver



Regular vs. Special Files (contd.)

Directories are considered special files because though they are

disk files, they have special format and special API calls:

• they contain a list of records

• each record contains an inode number and filename

• the first two directory records are always:

. (dot) a link to the directory itself

.. (double dot) a link to the parent directory

Linux Basics 2: Filesystem Contd. c©Norman Carver



Physical Filesystems

The term “filesystem” can also be used to refer to the format

used to store files on a storage device, i.e., a physical filesystem.

As noted above, the single logical filesystem tree is composed

from multiple partitions and/or storage devices, each mounted

at some point in the tree.

All of these partitions/storage devices make use of a physical

filesystem to organize the data they contain.

There are a wide variety of different physical filesystems in common

use, including: FAT, NTFS, ext2/ext3/ext4, JFS, HFS+, ZFS,

ISO 9660, UDF, exFAT, JFFS2, LTFS, etc.

Linux Basics 2: Filesystem Contd. c©Norman Carver



Physical Filesystems

A filesystem is designed for a particular type of physical storage

device.

The largest set of filesystems are for “disk systems,” which allow

relatively rapid random access.

Disk filesystems include: FAT, NTFS, ext2/ext3/ext4, JFS,

HFS+, ZFS, etc.

ISO 9660 and UDF are designed for optical discs (CD-ROM,

DVD-ROM, BR).

exFAT, JFFS2, etc. are for flash memory storage

(note that most consumer devices present a “disk interface,”

so are used with disk filesystems).

Linux Basics 2: Filesystem Contd. c©Norman Carver



Physical Filesystems (contd.)

Linux has the ability to work with many disk filesystems.

There are several “native” Linux disk filesystems:

• ext2, ext3, ext4, JFS, XFS, ReiserFS, Btrfs

• all of these except ext2 are journaled

Linux can also mount Windows filesystems:

• there is full read/write support for FAT32 and NTFS

• this means you can access your Windows files from Linux on

a dual-boot machine or from a USB storage device

Linux currently has only read support for journaled HFS+

filesystems used on Macs.

Linux Basics 2: Filesystem Contd. c©Norman Carver



Physical Filesystems (contd.)

Linux physical filesystems store a file’s contents separate from

the file’s metadata (information about the file).

The metadata is stored in an inode structure, which includes

the following information:

• inode number

• file owner (a user) and file group

• mode (permissions plus type)

• size in bytes

• last access time (atime)

• last modification time (mtime)

• last metadata change time (ctime)

• link count (explained below)

Linux Basics 2: Filesystem Contd. c©Norman Carver



Physical Filesystems (contd.)

The link count attribute of an inode structure warrants further

explanation.

We typically think of files as being “contained in” a directory.

What is actually stored inside a Linux directory, however, is a file

record.

Each file record contains two pieces of information:

• a name for the file

• a link to the file itself (i.e., to the file’s inode)

Linux Basics 2: Filesystem Contd. c©Norman Carver



Physical Filesystems (contd.)

Each directory entry (record) is termed a hard link to the file.

A file (i.e., the contents) can be linked multiple times.

This means that a file can have multiple names in the filesystem,

in different directories or even in the same directory.

Most regular files will have a link count of one.

Directories have a link count of at least two, because each

directory contains two special records:

• . (dot) – a link to the directory itself

• .. (double dot) – a link to the parent directory

Linux Basics 2: Filesystem Contd. c©Norman Carver



Physical Filesystems (contd.)

A second type of “file link” is the symbolic link/soft link/symlink.

A symlink is a type of special file that contains the pathname of

another file (as text).

Many commands/functions automatically “follow symlinks,” which

means they operate on the target file in the symlink rather than

on the symlink file itself.

This means that symlinks often function much like hard links in

terms of accessing the target file contents.

Symlinks make it easy to see that a file “points to” another file.

Symlinks are much used to provide multiple names for system

libraries and the like (e.g., libx.so and libx.so.3 are symlinks to

the true library file libx.so.3.2).

Linux Basics 2: Filesystem Contd. c©Norman Carver



Additional Filesystem Commands

ln – create hard/soft links

• ln existing-name second-name

• ln -s existing-name symlink-name

Linux Basics 2: Filesystem Contd. c©Norman Carver


