
Linux Basics 4: Processes

To work effectively on a Linux system, it is necessary to

understand a number of the basic aspects of Linux:

• The Filesystem (directories and files)

• Users, Groups, and File Permissions

• Processes

– what is a process

– process attributes

– process ID (PID)

– environment variables

– exit status

– signals

– process commands

Linux Basics 4: Processes c©Norman Carver



Processes

The term process is used to refer to a program (e.g., command)

that is being executed (i.e., is running).

Every process has a set of attributes, including:

• process ID (PID) and parent process ID (PPID)

• real UID (RUID) and effective UID (EUID)

• real GID (RGID) and effective GID (EGID)

• address space, program counter, run state, etc.

• open files/devices (file descriptor table)

• umask, nice value (priority), resource limits, etc.

• signal masks and handlers, alarms/timers, etc.

Linux Basics 4: Processes c©Norman Carver



Processes (contd.)

Every process (except the first) is created by another process,

which is called its parent.

The first process, init, is created by the kernel boot process and

has PID of 1 (one).

Each process will be in one of several states:

• running/runnable (running or in run queue)

• sleeping/suspended (e.g., waiting for I/O device)

• defunct/zombie (terminated, waiting for collection)

• stopped (job control)

Linux Basics 4: Processes c©Norman Carver



Threads

Each process will have at least one thread of execution (one

sequence of statements in the program that are being executed).

Linux supports OS threads, so each process can in fact contain

multiple threads.

Most Linux commands/tools show only processes by default;

options must be used to show threads.

When viewing threads, one must know these terms:

• thread ID (TID): unique system-wide ID for an os thread

• thread group: the set of OS threads in a process

• thread group ID (TGID): ID for a thread group, is the

same as the PID of the containing process

Linux Basics 4: Processes c©Norman Carver



Environment Variables

One important process attribute is the environment.

The environment is a list of variable-value pairs, which are coded

as C strings with the format: "variable=value".

These variables are referred to as environment variables.

Environment variables are given uppercase names by convention

(to distinguish them from normal shell variables).

The environment is generally inherited when a subprocess is

created (via fork()).

A standard set of environment variables are used to pass basic

parameters to all programs.

Linux Basics 4: Processes c©Norman Carver



Environment Variables (contd.)

Key standard environment variables:

PATH – the directories to search for commands

HOME – the current user’s home directory

USER,LOGNAME – current username

PWD – current working directory

HOSTNAME – hostname of machine

SHELL – default shell for current user

TERM – terminal type

LANG,LC * – set of locale related variables.

Linux Basics 4: Processes c©Norman Carver



Exit Status

When a Linux/UNIX process terminates, it returns exit status

information to the kernel.

This exit status information is supposed to be collected by the

process’ parent.

One element of the exit status is whether the program had

terminated normally or abnormally:

• normal termination: program called exit() (or a related

function) or returned from its main

• abnormal termination: program called abort(), received a

terminating signal, or canceled the thread

Linux Basics 4: Processes c©Norman Carver



Exit Status (contd.)

When a process terminates normally, it must return a non-negative

integer between 0 and 255 to indicate its success/failure status:

• 0 (zero) indicates success

• any other value indicates failure, with the value

possibly representing the reason for failure

• 1 is the default failure return code

Linux Basics 4: Processes c©Norman Carver



Signals

Signals are a mechanism for notifying processes that some event

has occurred.

They can be considered both as software interrupts and as a

simple interprocess communication (IPC) mechanism.

Signals can be generated in several ways:

• process/program can cause explicitly (e.g., kill())

• process/program can cause due to error

(e.g., segmentation fault)

• user can cause by typing special terminal keys (e.g., ctrl-c)

• user can send using kill command

Linux Basics 4: Processes c©Norman Carver



Signals (contd.)

Signals have default actions that occur when they are received

by a process, which can be one of:

• terminate process

• terminate process and generate core file

• ignore signal

• stop process

Processes can also be set to ignore or (temporarily) block most

signals.

However, two signals cannot be ignored/blocked (SIGKILL and

SIGSTOP).

Linux Basics 4: Processes c©Norman Carver



Signals (contd.)

Some key signals (for users):

SIGTERM – standard kill signal (but can be ignored/blocked)

SIGKILL – terminate process (cannot be ignored/blocked)

SIGINT – sent by typing interrupt key (ctrl-c)

SIGQUIT – sent by typing quit key (ctrl-\)

SIGSEGV – a segmentation fault (segfault), caused by an

illegal memory reference in a program

SIGBUS – a hardware error has occurred

SIGHUP – controlling terminal has disconnected (“hang up”)

Linux Basics 4: Processes c©Norman Carver



Key Process Commands

ps – list current process information

• ps -eF

• ps aux

• ps -eFT (show all threads)

pstree – show tree of processes

• pstree

top – realtime display of CPU usage by process

• top

kill – terminate a process (send it a signal)

• kill 4521

• kill -9 4521 or kill -SIGKILL 4521

printenv – print environment variable info

• printenv PATH

Linux Basics 4: Processes c©Norman Carver


